Department for Internal Medicine, Section Respiratory Diseases, Faculty of Medicine, Philipps-University Marburg, Baldingerstr. 1, 35043 Marburg, Germany.
Med Biol Eng Comput. 2012 Feb;50(2):135-44. doi: 10.1007/s11517-011-0853-9. Epub 2011 Dec 23.
The diagnosis of sleep-disordered breathing (SDB) usually relies on the analysis of complex polysomnographic measurements performed in specialized sleep centers. Automatic signal analysis is a promising approach to reduce the diagnostic effort. This paper addresses SDB and sleep assessment solely based on the analysis of a single-channel ECG recorded overnight by a set of signal analysis modules. The methodology of QRS detection, SDB analysis, calculation of ECG-derived respiration curves, and estimation of a sleep pattern is described in detail. SDB analysis detects specific cyclical variations of the heart rate by correlation analysis of a signal pattern and the heart rate curve. It was tested with 35 SDB-annotated ECGs from the Apnea-ECG Database, and achieved a diagnostic accuracy of 80.5%. To estimate sleep pattern, spectral parameters of the heart rate are used as stage classifiers. The reliability of the algorithm was tested with 18 ECGs extracted from visually scored polysomnographies of the SIESTA database; 57.7% of all 30 s epochs were correctly assigned by the algorithm. Although promising, these results underline the need for further testing in larger patient groups with different underlying diseases.
睡眠障碍呼吸(SDB)的诊断通常依赖于在专门的睡眠中心进行的复杂多导睡眠图测量的分析。自动信号分析是一种很有前途的方法,可以减少诊断的工作量。本文仅基于通过一组信号分析模块在夜间记录的单个通道 ECG 来进行 SDB 和睡眠评估。详细描述了 QRS 检测、SDB 分析、基于 ECG 的呼吸曲线计算和睡眠模式估计的方法。SDB 分析通过对信号模式和心率曲线的相关分析来检测心率的特定周期性变化。它使用来自 Apnea-ECG 数据库的 35 个带有 SDB 注释的 ECG 进行了测试,其诊断准确性达到 80.5%。为了估计睡眠模式,心率的频谱参数用作阶段分类器。该算法使用来自 SIESTA 数据库的视觉评分多导睡眠图中提取的 18 个 ECG 进行了测试;算法正确分配了所有 30 秒时间段的 57.7%。尽管有希望,但这些结果强调了需要在具有不同潜在疾病的更大患者群体中进行进一步测试。