Suppr超能文献

皱襞在巨胞饮泡形成过程中限制质膜中的扩散。

Ruffles limit diffusion in the plasma membrane during macropinosome formation.

机构信息

Program in Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA.

出版信息

J Cell Sci. 2011 Dec 1;124(Pt 23):4106-14. doi: 10.1242/jcs.091538.

Abstract

In murine macrophages stimulated with macrophage-colony-stimulating factor (M-CSF), signals essential to macropinosome formation are restricted to the domain of plasma membrane enclosed within cup-shaped, circular ruffles. Consistent with a role for these actin-rich structures in signal amplification, microscopic measures of Rac1 activity determined that disruption of actin polymerization by latrunculin B inhibited ruffling and the localized activation of Rac1 in response to M-CSF. To test the hypothesis that circular ruffles restrict the lateral diffusion of membrane proteins that are essential for signaling, we monitored diffusion of membrane-tethered, photoactivatable green fluorescent protein (PAGFP-MEM) in ruffling and non-ruffling regions of cells. Although diffusion within macropinocytic cups was not inhibited, circular ruffles retained photoactivated PAGFP-MEM inside cup domains. Confinement of membrane molecules by circular ruffles could explain how actin facilitates positive feedback amplification of Rac1 in these relatively large domains of the plasma membrane, thereby organizing the contractile activities that close macropinosomes.

摘要

在巨噬细胞集落刺激因子 (M-CSF) 刺激的鼠源巨噬细胞中,对于形成大胞饮泡至关重要的信号局限于杯状、环形皱襞所包围的细胞膜区域内。这些富含肌动蛋白的结构在信号放大中的作用一致,通过 latrunculin B 破坏肌动蛋白聚合会抑制皱襞的形成以及 Rac1 在 M-CSF 刺激下的局部激活。为了验证环形皱襞限制对于信号转导至关重要的膜蛋白侧向扩散的假说,我们监测了在细胞的皱襞和非皱襞区域中膜结合的光活化绿色荧光蛋白 (PAGFP-MEM) 的扩散。虽然大胞饮泡内的扩散没有受到抑制,但环形皱襞将光活化的 PAGFP-MEM 保留在杯状结构域内。环形皱襞对膜分子的限制可以解释肌动蛋白如何在这些相对较大的细胞膜区域中促进 Rac1 的正反馈放大,从而组织封闭大胞饮泡的收缩活动。

相似文献

1
Ruffles limit diffusion in the plasma membrane during macropinosome formation.
J Cell Sci. 2011 Dec 1;124(Pt 23):4106-14. doi: 10.1242/jcs.091538.
2
Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages.
J Cell Sci. 2009 Sep 15;122(Pt 18):3250-61. doi: 10.1242/jcs.053207. Epub 2009 Aug 18.
3
A growth factor signaling cascade confined to circular ruffles in macrophages.
Biol Open. 2012 Aug 15;1(8):754-60. doi: 10.1242/bio.20121784. Epub 2012 Jun 27.
6
Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1.
J Bone Miner Res. 2005 Dec;20(12):2245-53. doi: 10.1359/JBMR.050816. Epub 2005 Aug 22.
7
Phosphoinositide metabolism during membrane ruffling and macropinosome formation in EGF-stimulated A431 cells.
Exp Cell Res. 2007 Apr 15;313(7):1496-507. doi: 10.1016/j.yexcr.2007.02.012. Epub 2007 Feb 23.

引用本文的文献

2
Membrane Ruffles: Composition, Function, Formation and Visualization.
Int J Mol Sci. 2024 Oct 12;25(20):10971. doi: 10.3390/ijms252010971.
3
Making cups and rings: the 'stalled-wave' model for macropinocytosis.
Biochem Soc Trans. 2024 Aug 28;52(4):1785-1794. doi: 10.1042/BST20231426.
4
The Amoebal Model for Macropinocytosis.
Subcell Biochem. 2022;98:41-59. doi: 10.1007/978-3-030-94004-1_3.
5
Revealing macropinocytosis using nanoparticles.
Mol Aspects Med. 2022 Feb;83:100993. doi: 10.1016/j.mam.2021.100993. Epub 2021 Jul 16.
6
Macropinocytosis in Different Cell Types: Similarities and Differences.
Membranes (Basel). 2020 Aug 3;10(8):177. doi: 10.3390/membranes10080177.
7
Function of small GTPases in Dictyostelium macropinocytosis.
Philos Trans R Soc Lond B Biol Sci. 2019 Feb 4;374(1765):20180150. doi: 10.1098/rstb.2018.0150.
8
The origins and evolution of macropinocytosis.
Philos Trans R Soc Lond B Biol Sci. 2019 Feb 4;374(1765):20180158. doi: 10.1098/rstb.2018.0158.
9
Macropinosomes as units of signal transduction.
Philos Trans R Soc Lond B Biol Sci. 2019 Feb 4;374(1765):20180157. doi: 10.1098/rstb.2018.0157.
10
IQGAP-related protein IqgC suppresses Ras signaling during large-scale endocytosis.
Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1289-1298. doi: 10.1073/pnas.1810268116. Epub 2019 Jan 8.

本文引用的文献

1
Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages.
J Cell Sci. 2009 Sep 15;122(Pt 18):3250-61. doi: 10.1242/jcs.053207. Epub 2009 Aug 18.
2
Shaping cups into phagosomes and macropinosomes.
Nat Rev Mol Cell Biol. 2008 Aug;9(8):639-49. doi: 10.1038/nrm2447. Epub 2008 Jul 9.
3
Modulation of lateral diffusion in the plasma membrane by protein density.
Curr Biol. 2007 Mar 6;17(5):462-7. doi: 10.1016/j.cub.2007.01.069.
4
N-WASP involvement in dorsal ruffle formation in mouse embryonic fibroblasts.
Mol Biol Cell. 2007 Feb;18(2):678-87. doi: 10.1091/mbc.e06-06-0569. Epub 2006 Dec 20.
6
The leading edge is a lipid diffusion barrier.
J Cell Sci. 2005 Oct 1;118(Pt 19):4375-80. doi: 10.1242/jcs.02551. Epub 2005 Sep 6.
7
Chemical inhibition of N-WASP by stabilization of a native autoinhibited conformation.
Nat Struct Mol Biol. 2004 Aug;11(8):747-55. doi: 10.1038/nsmb796. Epub 2004 Jul 4.
8
A barrier to lateral diffusion in the cleavage furrow of dividing mammalian cells.
Curr Biol. 2004 Jun 8;14(11):1002-6. doi: 10.1016/j.cub.2004.05.044.
9
Cdc42, Rac1, and Rac2 display distinct patterns of activation during phagocytosis.
Mol Biol Cell. 2004 Aug;15(8):3509-19. doi: 10.1091/mbc.e03-11-0847. Epub 2004 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验