Suppr超能文献

恒河猴神经内分泌节律功能的年龄相关变化。

Age-related changes in neuroendocrine rhythmic function in the rhesus macaque.

作者信息

Urbanski Henryk F, Sorwell Krystina G

机构信息

Division of Neuroscience, Oregon National Primate Research Center, 505 NW 185th Avenue, Beaverton, OR 97006, USA.

出版信息

Age (Dordr). 2012 Oct;34(5):1111-21. doi: 10.1007/s11357-011-9352-z. Epub 2011 Dec 25.

Abstract

Many environmental conditions show rhythmic changes across the 24-h day; these include changes in light intensity, ambient temperature, food availability, and presence or absence of predators. Consequently, many organisms have developed corresponding adaptations, which ensure that specific physiological and behavioral events occur at an appropriate time of the day. In mammals, the underlying mechanism responsible for synchronizing internal biochemical processes with circadian environmental cues has been well studied and is thought to comprise three major components: (1) photoreception by the retina and transmission of neural signals along the retinohypothalamic tract, (2) integration of photoperiodic information with an internal reference circadian pacemaker located in the suprachiasmatic nucleus, and (3) dissemination of circadian information to target organs, via the autonomic nervous system and through humoral pathways. Given the importance that neuroendocrine rhythms play in coordinating normal circadian physiology and behavior, it is plausible that their perturbation during aging contributes to the etiology of age-related pathologies. This mini-review highlights some of the most dramatic rhythmic neuroendocrine changes that occur in primates during aging, focusing primarily on data from the male rhesus macaques (Macaca mulatta). In addition to the age-associated attenuation of hormone levels and reduction of humoral circadian signaling, there are also significant age-related changes in intracrine processing enzymes and hormone receptors which may further affect the functional efficacy of these hormones. Rhesus macaques, like humans, are large diurnal primates and show many of the same physiological and behavioral circadian changes during aging. Consequently, they represent an ideal translational animal model in which to study the causes and consequences of age-associated internal circadian disruption and in which to evaluate novel therapies.

摘要

许多环境条件在24小时的一天中呈现出有节律的变化;这些变化包括光照强度、环境温度、食物可获得性以及捕食者的有无。因此,许多生物体已经形成了相应的适应性变化,以确保特定的生理和行为事件在一天中的适当时间发生。在哺乳动物中,负责使内部生化过程与昼夜环境线索同步的潜在机制已经得到了充分研究,并且被认为包括三个主要组成部分:(1) 视网膜的光接收以及神经信号沿视网膜下丘脑束的传递,(2) 光周期信息与位于视交叉上核的内部参考昼夜节律起搏器的整合,以及(3) 通过自主神经系统和体液途径将昼夜节律信息传播到靶器官。鉴于神经内分泌节律在协调正常的昼夜生理和行为中所起的重要作用,那么它们在衰老过程中的扰动促成与年龄相关的病理学病因是有道理的。这篇小型综述突出了灵长类动物在衰老过程中发生的一些最显著的节律性神经内分泌变化,主要关注来自雄性恒河猴(猕猴)的数据。除了与年龄相关的激素水平衰减和体液昼夜节律信号的减少外,内分泌加工酶和激素受体也存在显著的与年龄相关的变化,这可能会进一步影响这些激素的功能效力。恒河猴与人类一样,是大型昼行性灵长类动物,并且在衰老过程中表现出许多相同的生理和行为昼夜节律变化。因此,它们代表了一种理想的转化动物模型,可用于研究与年龄相关的内部昼夜节律紊乱的原因和后果,以及评估新的治疗方法。

相似文献

1
Age-related changes in neuroendocrine rhythmic function in the rhesus macaque.
Age (Dordr). 2012 Oct;34(5):1111-21. doi: 10.1007/s11357-011-9352-z. Epub 2011 Dec 25.
2
Role of circadian neuroendocrine rhythms in the control of behavior and physiology.
Neuroendocrinology. 2011;93(4):211-22. doi: 10.1159/000327399. Epub 2011 Apr 21.
3
Gene expression profiling of the SCN in young and old rhesus macaques.
J Mol Endocrinol. 2018 Aug;61(2):57-67. doi: 10.1530/JME-18-0062. Epub 2018 May 9.
4
Neuroendocrine concomitants of reproductive aging.
Exp Gerontol. 1994 May-Aug;29(3-4):275-83. doi: 10.1016/0531-5565(94)90007-8.
6
Aging of intrinsic circadian rhythms and sleep in a diurnal nonhuman primate, Macaca mulatta.
J Biol Rhythms. 2011 Apr;26(2):149-59. doi: 10.1177/0748730410395849.
8
[Aging and biological rhythms in primates].
Med Sci (Paris). 2006 Mar;22(3):279-83. doi: 10.1051/medsci/2006223279.
10
Circadian neural rhythms in mammals.
Annu Rev Physiol. 1985;47:49-64. doi: 10.1146/annurev.ph.47.030185.000405.

引用本文的文献

1
The aged female rhesus macaque as a translational model for human menopause and hormone therapy.
Horm Behav. 2024 Nov;166:105658. doi: 10.1016/j.yhbeh.2024.105658. Epub 2024 Nov 11.
2
Sex, season, age and status influence urinary steroid hormone profiles in an extremely polygynous neotropical bat.
Horm Behav. 2024 Aug;164:105606. doi: 10.1016/j.yhbeh.2024.105606. Epub 2024 Jul 26.
3
Age-related increase in the expression of 11β-hydroxysteroid dehydrogenase type 1 in the hippocampus of male rhesus macaques.
Front Aging Neurosci. 2024 Mar 15;16:1328543. doi: 10.3389/fnagi.2024.1328543. eCollection 2024.
5
Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration.
Front Aging Neurosci. 2022 Feb 21;14:824921. doi: 10.3389/fnagi.2022.824921. eCollection 2022.
6
The behavioral neuroendocrinology of dopamine systems in differently reared juvenile male rhesus monkeys (Macaca mulatta).
Horm Behav. 2022 Jan;137:105078. doi: 10.1016/j.yhbeh.2021.105078. Epub 2021 Nov 22.
7
BMAL1 knockout macaque monkeys display reduced sleep and psychiatric disorders.
Natl Sci Rev. 2019 Jan;6(1):87-100. doi: 10.1093/nsr/nwz002. Epub 2019 Jan 24.
8
Lack of effect of short-term DHEA supplementation on the perimenopausal ovary†.
Biol Reprod. 2020 Dec 1;103(6):1209-1216. doi: 10.1093/biolre/ioaa160.
9
Restorative functions of Autologous Stem Leydig Cell transplantation in a Testosterone-deficient non-human primate model.
Theranostics. 2020 Jul 9;10(19):8705-8720. doi: 10.7150/thno.46854. eCollection 2020.
10
Self-injurious behaviours in rhesus macaques: Potential glial mechanisms.
J Intellect Disabil Res. 2018 Dec;62(12):1008-1017. doi: 10.1111/jir.12558.

本文引用的文献

1
Spatial Memory Performance Associated with Measures of Immune Function in Elderly Female Rhesus Macaques.
Eur Geriatr Med. 2011 Apr 1;2(2):117-121. doi: 10.1016/j.eurger.2011.01.002.
2
Role of circadian neuroendocrine rhythms in the control of behavior and physiology.
Neuroendocrinology. 2011;93(4):211-22. doi: 10.1159/000327399. Epub 2011 Apr 21.
3
Intrinsic activity rhythms in Macaca mulatta: their entrainment to light and melatonin.
J Biol Rhythms. 2010 Oct;25(5):361-71. doi: 10.1177/0748730410379382.
4
Circadian rhythms and treatment implications in depression.
Prog Neuropsychopharmacol Biol Psychiatry. 2011 Aug 15;35(7):1569-74. doi: 10.1016/j.pnpbp.2010.07.028. Epub 2010 Aug 5.
5
Testosterone deficiency and replacement in older men.
N Engl J Med. 2010 Jul 8;363(2):189-91. doi: 10.1056/NEJMe1006197.
7
Circadian timekeeping and multiple timescale neuroendocrine rhythms.
J Neuroendocrinol. 2010 Mar;22(3):209-16. doi: 10.1111/j.1365-2826.2010.01955.x. Epub 2010 Jan 7.
8
Modulation of synaptic plasticity by brain estrogen in the hippocampus.
Biochim Biophys Acta. 2010 Oct;1800(10):1030-44. doi: 10.1016/j.bbagen.2009.11.002. Epub 2009 Nov 10.
9
Circadian misalignment in mood disturbances.
Curr Psychiatry Rep. 2009 Dec;11(6):459-65. doi: 10.1007/s11920-009-0070-5.
10
Dehydroepiandrosterone and age-related cognitive decline.
Age (Dordr). 2010 Mar;32(1):61-7. doi: 10.1007/s11357-009-9113-4. Epub 2009 Aug 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验