Suppr超能文献

用于糖尿病的数据挖掘技术:一项系统综述。

Data-mining technologies for diabetes: a systematic review.

作者信息

Marinov Miroslav, Mosa Abu Saleh Mohammad, Yoo Illhoi, Boren Suzanne Austin

机构信息

Informatics Institute, University of Missouri, Columbia, Missouri, USA.

出版信息

J Diabetes Sci Technol. 2011 Nov 1;5(6):1549-56. doi: 10.1177/193229681100500631.

Abstract

BACKGROUND

The objective of this study is to conduct a systematic review of applications of data-mining techniques in the field of diabetes research.

METHOD

We searched the MEDLINE database through PubMed. We initially identified 31 articles by the search, and selected 17 articles representing various data-mining methods used for diabetes research. Our main interest was to identify research goals, diabetes types, data sets, data-mining methods, data-mining software and technologies, and outcomes.

RESULTS

The applications of data-mining techniques in the selected articles were useful for extracting valuable knowledge and generating new hypothesis for further scientific research/experimentation and improving health care for diabetes patients. The results could be used for both scientific research and real-life practice to improve the quality of health care diabetes patients.

CONCLUSIONS

Data mining has played an important role in diabetes research. Data mining would be a valuable asset for diabetes researchers because it can unearth hidden knowledge from a huge amount of diabetes-related data. We believe that data mining can significantly help diabetes research and ultimately improve the quality of health care for diabetes patients.

摘要

背景

本研究的目的是对数据挖掘技术在糖尿病研究领域的应用进行系统综述。

方法

我们通过PubMed搜索MEDLINE数据库。通过搜索最初识别出31篇文章,并选择了17篇代表用于糖尿病研究的各种数据挖掘方法的文章。我们主要关注的是确定研究目标、糖尿病类型、数据集、数据挖掘方法、数据挖掘软件和技术以及结果。

结果

所选文章中数据挖掘技术的应用有助于提取有价值的知识,并为进一步的科学研究/实验生成新的假设,以及改善糖尿病患者的医疗保健。这些结果可用于科学研究和实际生活实践,以提高糖尿病患者的医疗保健质量。

结论

数据挖掘在糖尿病研究中发挥了重要作用。数据挖掘对糖尿病研究人员来说将是一项宝贵资产,因为它可以从大量与糖尿病相关的数据中挖掘出隐藏的知识。我们相信数据挖掘可以显著帮助糖尿病研究,并最终提高糖尿病患者的医疗保健质量。

相似文献

1
Data-mining technologies for diabetes: a systematic review.
J Diabetes Sci Technol. 2011 Nov 1;5(6):1549-56. doi: 10.1177/193229681100500631.
4
Eliciting adverse effects data from participants in clinical trials.
Cochrane Database Syst Rev. 2018 Jan 16;1(1):MR000039. doi: 10.1002/14651858.MR000039.pub2.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
6
Quality improvement strategies for diabetes care: Effects on outcomes for adults living with diabetes.
Cochrane Database Syst Rev. 2023 May 31;5(5):CD014513. doi: 10.1002/14651858.CD014513.
7
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
8
Mobile phone messaging for facilitating self-management of long-term illnesses.
Cochrane Database Syst Rev. 2012 Dec 12;12(12):CD007459. doi: 10.1002/14651858.CD007459.pub2.
9
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.
Health Technol Assess. 2024 Oct;28(62):1-155. doi: 10.3310/MKRT2948.
10
The measurement of collaboration within healthcare settings: a systematic review of measurement properties of instruments.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):138-97. doi: 10.11124/JBISRIR-2016-2159.

引用本文的文献

2
A survey on data mining techniques used in medicine.
J Diabetes Metab Disord. 2021 Aug 31;20(2):2055-2071. doi: 10.1007/s40200-021-00884-2. eCollection 2021 Dec.
5
Identification of Potential Type II Diabetes in a Large-Scale Chinese Population Using a Systematic Machine Learning Framework.
J Diabetes Res. 2020 Sep 24;2020:6873891. doi: 10.1155/2020/6873891. eCollection 2020.
7
Semi supervised data mining model for the prognosis of pre-diabetic conditions in type 2 Diabetes Mellitus.
Bioinformation. 2019 Dec 31;15(12):875-882. doi: 10.6026/97320630015875. eCollection 2019.
8
Accurate and rapid screening model for potential diabetes mellitus.
BMC Med Inform Decis Mak. 2019 Mar 12;19(1):41. doi: 10.1186/s12911-019-0790-3.
9
Identification of Potential Type II Diabetes in a Chinese Population with a Sensitive Decision Tree Approach.
J Diabetes Res. 2019 Jan 22;2019:4248218. doi: 10.1155/2019/4248218. eCollection 2019.

本文引用的文献

1
Data mining in healthcare and biomedicine: a survey of the literature.
J Med Syst. 2012 Aug;36(4):2431-48. doi: 10.1007/s10916-011-9710-5. Epub 2011 May 3.
2
Data mining technologies for blood glucose and diabetes management.
J Diabetes Sci Technol. 2009 May 1;3(3):603-12. doi: 10.1177/193229680900300326.
4
Relationship between human periodontitis and type 2 diabetes at a genomic level: a data-mining study.
J Periodontol. 2009 Aug;80(8):1265-73. doi: 10.1902/jop.2009.080671.
6
Detecting hospital fraud and claim abuse through diabetic outpatient services.
Health Care Manag Sci. 2008 Dec;11(4):353-8. doi: 10.1007/s10729-008-9054-y.
8
Feature selection and classification model construction on type 2 diabetic patients' data.
Artif Intell Med. 2007 Nov;41(3):251-62. doi: 10.1016/j.artmed.2007.07.002. Epub 2007 Aug 17.
9
Outcomes of educational interventions in type 2 diabetes: WEKA data-mining analysis.
Patient Educ Couns. 2007 Jul;67(1-2):21-31. doi: 10.1016/j.pec.2007.03.007. Epub 2007 Apr 8.
10
Prediction of blood glucose level of type 1 diabetics using response surface methodology and data mining.
Med Biol Eng Comput. 2006 Jun;44(6):451-7. doi: 10.1007/s11517-006-0049-x. Epub 2006 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验