Computational Biophysics and Bioinformatics, Department of Physics, Clemson University, Clemson, SC 29634, USA.
Bioinformatics. 2012 Mar 1;28(5):664-71. doi: 10.1093/bioinformatics/bts005. Epub 2012 Jan 11.
The folding free energy is an important characteristic of proteins stability and is directly related to protein's wild-type function. The changes of protein's stability due to naturally occurring mutations, missense mutations, are typically causing diseases. Single point mutations made in vitro are frequently used to assess the contribution of given amino acid to the stability of the protein. In both cases, it is desirable to predict the change of the folding free energy upon single point mutations in order to either provide insights of the molecular mechanism of the change or to design new experimental studies.
We report an approach that predicts the free energy change upon single point mutation by utilizing the 3D structure of the wild-type protein. It is based on variation of the molecular mechanics Generalized Born (MMGB) method, scaled with optimized parameters (sMMGB) and utilizing specific model of unfolded state. The corresponding mutations are built in silico and the predictions are tested against large dataset of 1109 mutations with experimentally measured changes of the folding free energy. Benchmarking resulted in root mean square deviation = 1.78 kcal/mol and slope of the linear regression fit between the experimental data and the calculations was 1.04. The sMMGB is compared with other leading methods of predicting folding free energy changes upon single mutations and results discussed with respect to various parameters.
All the pdb files we used in this article can be downloaded from http://compbio.clemson.edu/downloadDir/mentaldisorders/sMMGB_pdb.rar.
Supplementary data are available at Bioinformatics online.
折叠自由能是蛋白质稳定性的一个重要特征,直接关系到蛋白质的野生型功能。由于自然发生的突变(错义突变)导致的蛋白质稳定性变化通常会导致疾病。体外引入的单点突变通常用于评估给定氨基酸对蛋白质稳定性的贡献。在这两种情况下,都希望预测单点突变对折叠自由能的变化,以便提供对变化的分子机制的深入了解,或设计新的实验研究。
我们报告了一种通过利用野生型蛋白质的 3D 结构来预测单点突变自由能变化的方法。它基于分子力学广义 Born(MMGB)方法的变化,通过优化参数(sMMGB)进行缩放,并利用特定的展开状态模型。相应的突变是在计算机上构建的,预测结果通过实验测量的折叠自由能变化的 1109 个突变的大型数据集进行了测试。基准测试的均方根偏差为 1.78 kcal/mol,实验数据和计算结果之间线性回归拟合的斜率为 1.04。将 sMMGB 与其他预测单点突变折叠自由能变化的领先方法进行了比较,并就各种参数进行了讨论。
本文中我们使用的所有pdb 文件都可以从 http://compbio.clemson.edu/downloadDir/mentaldisorders/sMMGB_pdb.rar 下载。
补充数据可在 Bioinformatics 在线获得。