Suppr超能文献

关于呈现效应修正和交互作用分析的建议。

Recommendations for presenting analyses of effect modification and interaction.

机构信息

Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands.

出版信息

Int J Epidemiol. 2012 Apr;41(2):514-20. doi: 10.1093/ije/dyr218. Epub 2012 Jan 9.

Abstract

Authors often do not give sufficient information to draw conclusions about the size and statistical significance of interaction on the additive and multiplicative scales. To improve this, we provide four steps, template tables and examples. We distinguish two cases: when the causal effect of intervening on one exposure, across strata of another factor, is of interest ('effect modification'); and when the causal effect of intervening on two exposures is of interest ('interaction'). Assume we study whether X modifies the effect of A on D, where A, X and D are dichotomous. We propose presenting: (i) relative risks (RRs), odds ratios (ORs) or risk differences (RDs) for each (A, X) stratum with a single reference category taken as the stratum with the lowest risk of D; (ii) RRs, ORs or RDs for A within strata of X; (iii) interaction measures on additive and multiplicative scales; (iv) the A-D confounders adjusted for. Assume we study the interaction between A and B on D, where A, B and D are dichotomous. Steps (i) and (iii) are similar to presenting effect modification. (ii) Present RRs, ORs or RDs for A within strata of B and for B within strata of A. (iv) List the A-D and B-D confounders adjusted for. These four pieces of information will provide a reader the information needed to assess effect modification or interaction. The presentation can be further enriched when exposures have multiple categories. Our proposal hopefully encourages researchers to present effect modification and interaction analyses in as informative a manner as possible.

摘要

作者在对加性和乘法尺度上的交互作用进行大小和统计显著性的结论推断时,往往没有提供足够的信息。为了改善这一点,我们提供了四个步骤、模板表格和示例。我们区分了两种情况:当干预对一个暴露因素在另一个因素的分层中的因果效应感兴趣时(“效应修饰”);以及当干预对两个暴露因素的因果效应感兴趣时(“交互作用”)。假设我们研究 X 是否修饰了 A 对 D 的影响,其中 A、X 和 D 是二分变量。我们建议呈现:(i)每个(A,X)分层的相对风险(RR)、优势比(OR)或风险差异(RD),以最低风险 D 的分层作为单一参考类别;(ii)X 分层内的 A 中的 RR、OR 或 RD;(iii)加性和乘法尺度上的交互作用测量;(iv)调整后的 A-D 混杂因素。假设我们研究 A 和 B 对 D 的交互作用,其中 A、B 和 D 是二分变量。步骤(i)和(iii)类似于呈现效应修饰。(ii)呈现 B 分层内的 A 和 A 分层内的 B 的 RR、OR 或 RD。(iv)列出调整后的 A-D 和 B-D 混杂因素。这四部分信息将为读者提供评估效应修饰或交互作用所需的信息。当暴露因素有多个类别时,可以进一步丰富呈现。我们的建议希望鼓励研究人员以尽可能有信息的方式呈现效应修饰和交互作用分析。

相似文献

1
Recommendations for presenting analyses of effect modification and interaction.
Int J Epidemiol. 2012 Apr;41(2):514-20. doi: 10.1093/ije/dyr218. Epub 2012 Jan 9.
2
Reporting of interaction.
Nephron Clin Pract. 2011;119(2):c158-61. doi: 10.1159/000327598. Epub 2011 Jul 8.
3
Interaction on an additive scale.
Nephron Clin Pract. 2011;119(2):c154-7. doi: 10.1159/000327596. Epub 2011 Jul 8.
4
Tutorial: A nontechnical explanation of the counterfactual definition of effect modification and interaction.
J Clin Epidemiol. 2021 Jun;134:113-124. doi: 10.1016/j.jclinepi.2021.01.022. Epub 2021 Feb 4.
5
Assessing interaction in case-control studies: type I errors when using both additive and multiplicative scales.
Epidemiology. 2004 Jul;15(4):422-7. doi: 10.1097/01.ede.0000129508.82783.94.
6
The effect of joint exposures: examining the presence of interaction.
Kidney Int. 2009 Apr;75(7):677-81. doi: 10.1038/ki.2008.645. Epub 2009 Feb 4.
7
On the distinction between interaction and effect modification.
Epidemiology. 2009 Nov;20(6):863-71. doi: 10.1097/EDE.0b013e3181ba333c.
8
Four types of effect modification: a classification based on directed acyclic graphs.
Epidemiology. 2007 Sep;18(5):561-8. doi: 10.1097/EDE.0b013e318127181b.
9
Analytical implications of epidemiological concepts of interaction.
Int J Epidemiol. 1989 Dec;18(4):976-80. doi: 10.1093/ije/18.4.976.
10
When one depends on the other: reporting of interaction in case-control and cohort studies.
Epidemiology. 2009 Mar;20(2):161-6. doi: 10.1097/EDE.0b013e31818f6651.

引用本文的文献

1
Breastfeeding Conversations with a Home Visitor and Breastfeeding Continuation in Postnatal Enrollees.
Matern Child Health J. 2025 Sep 15. doi: 10.1007/s10995-025-04173-9.
6
Secretory IgA modifies the association between early-life gut microbiota trajectories and childhood nonatopic wheeze.
ERJ Open Res. 2025 Aug 11;11(4). doi: 10.1183/23120541.00240-2025. eCollection 2025 Jul.
8
9
Sex disparities in papillary thyroid cancer survival: Divergent patterns of relative and absolute effects across the age spectrum.
PLoS One. 2025 Jul 24;20(7):e0328876. doi: 10.1371/journal.pone.0328876. eCollection 2025.
10

本文引用的文献

1
A weighting approach to causal effects and additive interaction in case-control studies: marginal structural linear odds models.
Am J Epidemiol. 2011 Nov 15;174(10):1197-203. doi: 10.1093/aje/kwr334. Epub 2011 Oct 19.
2
A word and that to which it once referred: assessing "biologic" interaction.
Epidemiology. 2011 Jul;22(4):612-3. doi: 10.1097/EDE.0b013e31821db393.
3
Interpretation of subgroup analyses in randomized trials: heterogeneity versus secondary interventions.
Ann Intern Med. 2011 May 17;154(10):680-3. doi: 10.7326/0003-4819-154-10-201105170-00008.
4
Causal interactions in the proportional hazards model.
Epidemiology. 2011 Sep;22(5):713-7. doi: 10.1097/EDE.0b013e31821db503.
5
Estimating measures of interaction on an additive scale for preventive exposures.
Eur J Epidemiol. 2011 Jun;26(6):433-8. doi: 10.1007/s10654-011-9554-9. Epub 2011 Feb 23.
6
Confidence intervals for the interaction contrast ratio.
Epidemiology. 2010 Mar;21(2):273-4. doi: 10.1097/EDE.0b013e3181cc9bfc.
7
On the distinction between interaction and effect modification.
Epidemiology. 2009 Nov;20(6):863-71. doi: 10.1097/EDE.0b013e3181ba333c.
9
Sufficient cause interactions and statistical interactions.
Epidemiology. 2009 Jan;20(1):6-13. doi: 10.1097/EDE.0b013e31818f69e7.
10
Estimation of the relative excess risk due to interaction and associated confidence bounds.
Am J Epidemiol. 2009 Mar 15;169(6):756-60. doi: 10.1093/aje/kwn411. Epub 2009 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验