Ahmed Mosabber Uddin, Li Ling, Cao Jianting, Mandic Danilo P
Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:810-3. doi: 10.1109/IEMBS.2011.6090185.
The recently introduced multiscale entropy (MSE) method accounts for long range correlations over multiple time scales and can therefore reveal the complexity of biological signals. The existing MSE algorithm deals with scalar time series whereas multivariate time series are common in experimental and biological systems. To that cause, in this paper the MSE method is extended to the multivariate case. This allows us to gain a greater insight into the complexity of the underlying signal generating system, producing multifaceted and more robust estimates than standard single channel MSE. Simulations on both synthetic data and brain consciousness analysis support the approach.
最近引入的多尺度熵(MSE)方法考虑了多个时间尺度上的长程相关性,因此能够揭示生物信号的复杂性。现有的MSE算法处理的是标量时间序列,而多变量时间序列在实验和生物系统中很常见。因此,在本文中,MSE方法被扩展到多变量情况。这使我们能够更深入地了解潜在信号生成系统的复杂性,比标准的单通道MSE产生多方面且更稳健的估计。对合成数据和脑意识分析的模拟都支持该方法。