Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
Microbiology (Reading). 2012 Apr;158(Pt 4):896-907. doi: 10.1099/mic.0.054254-0. Epub 2012 Jan 19.
The aim of the current study was to determine how quorum sensing (QS) affects the production of secondary metabolites in Pseudomonas chlororaphis strain PA23. A phzR mutant (PA23phzR) and an N-acylhomoserine lactone (AHL)-deficient strain (PA23-6863) were generated that no longer inhibited the fungal pathogen Sclerotinia sclerotiorum in vitro. Both strains exhibited reduced pyrrolnitrin (PRN), phenazine (PHZ) and protease production. Moreover, phzA-lacZ and prnA-lacZ transcription was significantly reduced in PA23phzR and PA23-6863. As the majority of secondary metabolites are produced at the onset of stationary phase, we investigated whether cross-regulation occurs between QS and RpoS. Analysis of transcriptional fusions revealed that RpoS has a positive and negative effect on phzI and phzR, respectively. In a reciprocal manner, RpoS is positively regulated by QS. Characterization of a phzRrpoS double mutant showed reduced antifungal activity as well as PRN and PHZ production, similar to the QS-deficient strains. Furthermore, phzR but not rpoS was able to complement the phzRrpoS double mutant for the aforementioned traits, indicating that the Phz QS system is a central regulator of PA23-mediated antagonism. Finally, we discovered that QS and RpoS have opposing effects on PA23 biofilm formation. While both QS-deficient strains produced little biofilm, the rpoS mutant showed enhanced biofilm production compared with PA23. Collectively, our findings indicate that QS controls diverse aspects of PA23 physiology, including secondary metabolism, RpoS and biofilm formation. As such, QS is expected to play a crucial role in PA23 biocontrol and persistence in the environment.
本研究旨在探讨群体感应(QS)如何影响假单胞菌属 PA23 中次生代谢产物的产生。生成了一个不再体外抑制真菌病原体核盘菌的 phzR 突变体(PA23phzR)和一个 N-酰基高丝氨酸内酯(AHL)缺陷菌株(PA23-6863)。这两种菌株的吡咯并[1,2-a]吡啶-2,3-二酮(PRN)、吩嗪(PHZ)和蛋白酶产量均降低。此外,PA23phzR 和 PA23-6863 中 phzA-lacZ 和 prnA-lacZ 的转录显著减少。由于大多数次生代谢产物是在静止期开始时产生的,我们研究了 QS 和 RpoS 是否存在交叉调节。转录融合分析表明,RpoS 分别对 phzI 和 phzR 有正、负调节作用。相反,QS 正向调节 RpoS。phzRrpoS 双突变体的表征显示其抗真菌活性以及 PRN 和 PHZ 的产生均降低,类似于 QS 缺陷菌株。此外,phzR 但不是 rpoS 能够互补 phzRrpoS 双突变体的上述特征,表明 Phz QS 系统是 PA23 介导的拮抗作用的中央调节剂。最后,我们发现 QS 和 RpoS 对 PA23 生物膜形成有相反的影响。虽然两种 QS 缺陷菌株产生的生物膜很少,但 rpoS 突变体与 PA23 相比表现出增强的生物膜形成。总的来说,我们的研究结果表明,QS 控制 PA23 生理学的多个方面,包括次生代谢、RpoS 和生物膜形成。因此,QS 有望在 PA23 的生物防治和在环境中的持久性中发挥关键作用。