Suppr超能文献

M13 噬菌体功能化单壁碳纳米管作为纳米探针用于靶向肿瘤的第二近红外窗口荧光成像。

M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors.

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.

出版信息

Nano Lett. 2012 Mar 14;12(3):1176-1183. doi: 10.1021/nl2031663. Epub 2012 Feb 6.

Abstract

Second near-infrared (NIR) window light (950-1400 nm) is attractive for in vivo fluorescence imaging due to its deep penetration depth in tissues and low tissue autofluorescence. Here we show genetically engineered multifunctional M13 phage can assemble fluorescent single-walled carbon nanotubes (SWNTs) and ligands for targeted fluorescence imaging of tumors. M13-SWNT probe is detectable in deep tissues even at a low dosage of 2 μg/mL and up to 2.5 cm in tissue-like phantoms. Moreover, targeted probes show specific and up to 4-fold improved uptake in prostate specific membrane antigen positive prostate tumors compared to control nontargeted probes. This M13 phage-based second NIR window fluorescence imaging probe has great potential for specific detection and therapy monitoring of hard-to-detect areas.

摘要

第二个近红外(NIR)窗口光(950-1400nm)因其在组织中的深穿透深度和低组织自发荧光而吸引了用于体内荧光成像。在这里,我们展示了经过基因工程改造的多功能 M13 噬菌体可以组装荧光单壁碳纳米管(SWNTs)和配体,用于肿瘤的靶向荧光成像。即使在低剂量 2μg/ml 和高达 2.5cm 的类似组织的体模中,M13-SWNT 探针也可在深部组织中检测到。此外,与非靶向对照探针相比,靶向探针在前列腺特异性膜抗原阳性前列腺肿瘤中的特异性摄取增加了 4 倍。这种基于 M13 噬菌体的第二个近红外窗口荧光成像探针具有用于难以检测区域的特异性检测和治疗监测的巨大潜力。

相似文献

2
Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes.
Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13948-53. doi: 10.1073/pnas.1400821111. Epub 2014 Sep 11.
4
Layer-by-layer assembled fluorescent probes in the second near-infrared window for systemic delivery and detection of ovarian cancer.
Proc Natl Acad Sci U S A. 2016 May 10;113(19):5179-84. doi: 10.1073/pnas.1521175113. Epub 2016 Apr 25.
5
Deep learning for in vivo near-infrared imaging.
Proc Natl Acad Sci U S A. 2021 Jan 5;118(1). doi: 10.1073/pnas.2021446118.
6
Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells.
J Am Chem Soc. 2004 Dec 8;126(48):15638-9. doi: 10.1021/ja0466311.
8
Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):8943-8. doi: 10.1073/pnas.1014501108. Epub 2011 May 16.
9
Recent Progress in Fluorescence Imaging of the Near-Infrared II Window.
Chembiochem. 2018 Dec 18;19(24):2522-2541. doi: 10.1002/cbic.201800466. Epub 2018 Nov 9.

引用本文的文献

1
Cytokines Meet Phages: A Revolutionary Pathway to Modulating Immunity and Microbial Balance.
Biomedicines. 2025 May 15;13(5):1202. doi: 10.3390/biomedicines13051202.
2
Wireless charging LED mediated type I photodynamic therapy of breast cancer using NIR AIE photosensitizer.
iScience. 2025 Mar 11;28(4):112196. doi: 10.1016/j.isci.2025.112196. eCollection 2025 Apr 18.
3
Single-Walled Carbon Nanotubes as Optical Transducers for Nanobiosensors In Vivo.
ACS Nano. 2024 Dec 31;18(52):35164-35181. doi: 10.1021/acsnano.4c13076. Epub 2024 Dec 18.
4
Novel multi-spectral short-wave infrared imaging for assessment of human burn wound depth.
Wound Repair Regen. 2024 Nov-Dec;32(6):979-991. doi: 10.1111/wrr.13221. Epub 2024 Sep 26.
5
Monitoring Enzyme Activity Using Near-Infrared Fluorescent Single-Walled Carbon Nanotubes.
ACS Sens. 2024 May 24;9(5):2237-2253. doi: 10.1021/acssensors.4c00377. Epub 2024 Apr 26.
6
Construction of a bacteriophage-derived vector with potential applications in targeted drug delivery and cell imaging.
Biotechnol Lett. 2024 Apr;46(2):147-159. doi: 10.1007/s10529-023-03455-y. Epub 2024 Jan 6.
7
RNA and Single-Stranded DNA Phages: Unveiling the Promise from the Underexplored World of Viruses.
Int J Mol Sci. 2023 Dec 1;24(23):17029. doi: 10.3390/ijms242317029.
8
Engineered Phage-Based Cancer Vaccines: Current Advances and Future Directions.
Vaccines (Basel). 2023 Apr 29;11(5):919. doi: 10.3390/vaccines11050919.
9
Smart Nanomaterials in Cancer Theranostics: Challenges and Opportunities.
ACS Omega. 2023 Apr 10;8(16):14290-14320. doi: 10.1021/acsomega.2c07840. eCollection 2023 Apr 25.
10
Engineered M13 phage as a novel therapeutic bionanomaterial for clinical applications: From tissue regeneration to cancer therapy.
Mater Today Bio. 2023 Mar 24;20:100612. doi: 10.1016/j.mtbio.2023.100612. eCollection 2023 Jun.

本文引用的文献

2
Nanoparticles that communicate in vivo to amplify tumour targeting.
Nat Mater. 2011 Jun 19;10(7):545-52. doi: 10.1038/nmat3049.
3
Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window.
Proc Natl Acad Sci U S A. 2011 May 31;108(22):8943-8. doi: 10.1073/pnas.1014501108. Epub 2011 May 16.
5
Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates.
Angew Chem Int Ed Engl. 2011 May 9;50(20):4644-8. doi: 10.1002/anie.201100934. Epub 2011 Apr 19.
6
Fluorescent peptides highlight peripheral nerves during surgery in mice.
Nat Biotechnol. 2011 Apr;29(4):352-6. doi: 10.1038/nbt.1764. Epub 2011 Feb 6.
7
Expression of prostate-specific membrane antigen in normal, benign, and malignant prostate tissues.
Urol Oncol. 1995 Jan-Feb;1(1):18-28. doi: 10.1016/1078-1439(95)00002-y.
8
Near-infrared fluorescent nanoprobes for cancer molecular imaging: status and challenges.
Trends Mol Med. 2010 Dec;16(12):574-83. doi: 10.1016/j.molmed.2010.08.006. Epub 2010 Oct 1.
9
Targeting of drugs and nanoparticles to tumors.
J Cell Biol. 2010 Mar 22;188(6):759-68. doi: 10.1083/jcb.200910104. Epub 2010 Mar 15.
10
Surgery with molecular fluorescence imaging using activatable cell-penetrating peptides decreases residual cancer and improves survival.
Proc Natl Acad Sci U S A. 2010 Mar 2;107(9):4317-22. doi: 10.1073/pnas.0910261107. Epub 2010 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验