Suppr超能文献

基于本体的医疗知识个性化,以支持慢性病患者的临床决策。

An ontology-based personalization of health-care knowledge to support clinical decisions for chronically ill patients.

机构信息

Research Group on Artificial Intelligence, Universitat Rovira i Virgili, Tarragona, Spain.

出版信息

J Biomed Inform. 2012 Jun;45(3):429-46. doi: 10.1016/j.jbi.2011.12.008. Epub 2012 Jan 18.

Abstract

Chronically ill patients are complex health care cases that require the coordinated interaction of multiple professionals. A correct intervention of these sort of patients entails the accurate analysis of the conditions of each concrete patient and the adaptation of evidence-based standard intervention plans to these conditions. There are some other clinical circumstances such as wrong diagnoses, unobserved comorbidities, missing information, unobserved related diseases or prevention, whose detection depends on the capacities of deduction of the professionals involved. In this paper, we introduce an ontology for the care of chronically ill patients and implement two personalization processes and a decision support tool. The first personalization process adapts the contents of the ontology to the particularities observed in the health-care record of a given concrete patient, automatically providing a personalized ontology containing only the clinical information that is relevant for health-care professionals to manage that patient. The second personalization process uses the personalized ontology of a patient to automatically transform intervention plans describing health-care general treatments into individual intervention plans. For comorbid patients, this process concludes with the semi-automatic integration of several individual plans into a single personalized plan. Finally, the ontology is also used as the knowledge base of a decision support tool that helps health-care professionals to detect anomalous circumstances such as wrong diagnoses, unobserved comorbidities, missing information, unobserved related diseases, or preventive actions. Seven health-care centers participating in the K4CARE project, together with the group SAGESA and the Local Health System in the town of Pollenza have served as the validation platform for these two processes and tool. Health-care professionals participating in the evaluation agree about the average quality 84% (5.9/7.0) and utility 90% (6.3/7.0) of the tools and also about the correct reasoning of the decision support tool, according to clinical standards.

摘要

慢性病患者是复杂的医疗案例,需要多个专业人员的协调互动。正确干预这类患者需要准确分析每个具体患者的病情,并将基于证据的标准干预计划适应这些病情。还有一些其他临床情况,如误诊、未观察到的合并症、信息缺失、未观察到的相关疾病或预防措施,这些情况的检测取决于相关专业人员的推理能力。在本文中,我们介绍了一种用于慢性病患者护理的本体,并实现了两个个性化过程和一个决策支持工具。第一个个性化过程将本体的内容适应于特定患者的医疗记录中的特殊性,自动提供仅包含与管理该患者相关的临床信息的个性化本体。第二个个性化过程使用患者的个性化本体自动将描述一般医疗护理的干预计划转换为个体干预计划。对于合并症患者,此过程将几个个体计划半自动地集成到一个个性化计划中结束。最后,本体也被用作决策支持工具的知识库,该工具帮助医疗保健专业人员检测异常情况,如误诊、未观察到的合并症、信息缺失、未观察到的相关疾病或预防措施。参与 K4CARE 项目的七个医疗中心,连同 SAGESA 小组和波伦扎镇的地方卫生系统一起,成为这两个过程和工具的验证平台。根据临床标准,参与评估的医疗保健专业人员一致认为该工具的平均质量为 84%(5.9/7.0),平均效用为 90%(6.3/7.0),并且决策支持工具的推理也是正确的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验