Goulon Jośe, Rogalev Andrei, Goujon Gérard, Wilhelm Fabrice, Ben Youssef Jamal, Gros Claude, Barbe Jean-Michel, Guilard Roger
European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble Cedex, France.
Int J Mol Sci. 2011;12(12):8797-835. doi: 10.3390/ijms12128797. Epub 2011 Dec 2.
X-ray Detected Magnetic Resonance (XDMR) is a novel spectroscopy in which X-ray Magnetic Circular Dichroism (XMCD) is used to probe the resonant precession of local magnetization components in a strong microwave pump field. We review the conceptual bases of XDMR and recast them in the general framework of the linear and nonlinear theories of ferromagnetic resonance (FMR). Emphasis is laid on the information content of XDMR spectra which offer a unique opportunity to disentangle the precession dynamics of spin and orbital magnetization components at given absorbing sites. For the sake of illustration, we focus on selected examples in which marked differences were found between FMR and XDMR spectra simultaneously recorded on ferrimagnetically ordered iron garnets. With pumping capabilities extended up to sub-THz frequencies, high-field XDMR should allow us to probe the precession of orbital magnetization components in paramagnetic organometallic complexes with large zero-field splitting. Even more challenging, we suggest that XDMR spectra might be recorded on selected antiferromagnetic crystals for which orbital magnetism is most often ignored in the absence of any supporting experimental evidence.
X射线探测磁共振(XDMR)是一种新型光谱技术,其中X射线磁圆二色性(XMCD)用于探测强微波泵浦场中局部磁化分量的共振进动。我们回顾了XDMR的概念基础,并将其重新构建在铁磁共振(FMR)的线性和非线性理论的一般框架中。重点在于XDMR光谱的信息内容,它提供了一个独特的机会来解开给定吸收位点处自旋和轨道磁化分量的进动动力学。为了说明这一点,我们重点关注在亚铁磁有序铁石榴石上同时记录的FMR和XDMR光谱之间发现显著差异的选定示例。随着泵浦能力扩展到亚太赫兹频率,高场XDMR应该使我们能够探测具有大零场分裂的顺磁性有机金属配合物中轨道磁化分量的进动。更具挑战性的是,我们建议可以在选定的反铁磁晶体上记录XDMR光谱,在没有任何支持性实验证据的情况下,轨道磁性在这些晶体中常常被忽略。