Suppr超能文献

受体连接磷酸在视觉和非视觉 arrestin 与 G 蛋白偶联受体结合中的作用。

Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors.

机构信息

Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA.

出版信息

J Biol Chem. 2012 Mar 16;287(12):9028-40. doi: 10.1074/jbc.M111.311803. Epub 2012 Jan 24.

Abstract

Arrestins are a small family of proteins that regulate G protein-coupled receptors (GPCRs). Arrestins specifically bind to phosphorylated active receptors, terminating G protein coupling, targeting receptors to endocytic vesicles, and initiating G protein-independent signaling. The interaction of rhodopsin-attached phosphates with Lys-14 and Lys-15 in β-strand I was shown to disrupt the interaction of α-helix I, β-strand I, and the C-tail of visual arrestin-1, facilitating its transition into an active receptor-binding state. Here we tested the role of conserved lysines in homologous positions of non-visual arrestins by generating K2A mutants in which both lysines were replaced with alanines. K2A mutations in arrestin-1, -2, and -3 significantly reduced their binding to active phosphorhodopsin in vitro. The interaction of arrestins with several GPCRs in intact cells was monitored by a bioluminescence resonance energy transfer (BRET)-based assay. BRET data confirmed the role of Lys-14 and Lys-15 in arrestin-1 binding to non-cognate receptors. However, this was not the case for non-visual arrestins in which the K2A mutations had little effect on net BRET(max) values for the M2 muscarinic acetylcholine (M2R), β(2)-adrenergic (β(2)AR), or D2 dopamine receptors. Moreover, a phosphorylation-deficient mutant of M2R interacted with wild type non-visual arrestins normally, whereas phosphorylation-deficient β(2)AR mutants bound arrestins at 20-50% of the level of wild type β(2)AR. Thus, the contribution of receptor-attached phosphates to arrestin binding varies depending on the receptor-arrestin pair. Although arrestin-1 always depends on receptor phosphorylation, its role in the recruitment of arrestin-2 and -3 is much greater in the case of β(2)AR than M2R and D2 dopamine receptor.

摘要

抑制蛋白是一类调节 G 蛋白偶联受体 (GPCR) 的小蛋白家族。抑制蛋白特异性结合磷酸化的活性受体,终止 G 蛋白偶联,靶向受体到内吞小泡,并启动 G 蛋白非依赖性信号转导。已经表明,视紫红质结合的磷酸与 I 型β链上的赖氨酸 14 和赖氨酸 15 相互作用,破坏 I 型α螺旋、I 型β链和视觉抑制素-1 的 C 末端之间的相互作用,促进其向活性受体结合状态转变。在这里,我们通过生成 K2A 突变体(其中两个赖氨酸均被丙氨酸取代)来测试非视觉抑制蛋白同源位置上保守赖氨酸的作用。抑制素-1、-2 和 -3 中的 K2A 突变显著降低了它们在体外与活性视黄醛磷酸化蛋白的结合。通过基于生物发光共振能量转移 (BRET) 的测定法监测完整细胞中抑制素与几种 GPCR 的相互作用。BRET 数据证实了 Lys-14 和 Lys-15 在抑制素-1与非同源受体结合中的作用。然而,对于非视觉抑制素而言并非如此,其中 K2A 突变对 M2 毒蕈碱乙酰胆碱 (M2R)、β(2)-肾上腺素能 (β(2)AR) 或 D2 多巴胺受体的净 BRET(max) 值几乎没有影响。此外,M2R 的磷酸化缺陷型突变体与野生型非视觉抑制素正常相互作用,而磷酸化缺陷型 β(2)AR 突变体与野生型 β(2)AR 的结合抑制素水平仅为 20-50%。因此,受体结合的磷酸化对抑制素结合的贡献因受体-抑制素对而异。虽然抑制素-1总是依赖于受体磷酸化,但在β(2)AR 的情况下,其在招募抑制素-2 和 -3 中的作用比 M2R 和 D2 多巴胺受体大得多。

相似文献

1
Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors.
J Biol Chem. 2012 Mar 16;287(12):9028-40. doi: 10.1074/jbc.M111.311803. Epub 2012 Jan 24.
2
Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins.
J Biol Chem. 2012 Aug 24;287(35):29495-505. doi: 10.1074/jbc.M112.366674. Epub 2012 Jul 11.
3
Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.
Cell Signal. 2017 Aug;36:98-107. doi: 10.1016/j.cellsig.2017.04.021. Epub 2017 Apr 28.
4
Identification of receptor binding-induced conformational changes in non-visual arrestins.
J Biol Chem. 2014 Jul 25;289(30):20991-1002. doi: 10.1074/jbc.M114.560680. Epub 2014 May 27.
6
Lysine in the lariat loop of arrestins does not serve as phosphate sensor.
J Neurochem. 2021 Feb;156(4):435-444. doi: 10.1111/jnc.15110. Epub 2020 Jul 11.
8
β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle.
Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.
9
Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors.
Proc Natl Acad Sci U S A. 2008 Jul 22;105(29):9988-93. doi: 10.1073/pnas.0804246105. Epub 2008 Jul 11.
10
Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins.
J Biol Chem. 2011 Jul 8;286(27):24288-99. doi: 10.1074/jbc.M110.213835. Epub 2011 Apr 6.

引用本文的文献

2
A small molecule enhances arrestin-3 binding to the β-adrenergic receptor.
Commun Chem. 2025 Jul 1;8(1):194. doi: 10.1038/s42004-025-01581-4.
3
The Role of Individual Residues in the N-Terminus of Arrestin-1 in Rhodopsin Binding.
Int J Mol Sci. 2025 Jan 16;26(2):715. doi: 10.3390/ijms26020715.
4
A small molecule enhances arrestin-3 binding to the β-adrenergic receptor.
bioRxiv. 2024 Dec 13:2024.12.12.628161. doi: 10.1101/2024.12.12.628161.
5
GPCR-dependent and -independent arrestin signaling.
Trends Pharmacol Sci. 2024 Jul;45(7):639-650. doi: 10.1016/j.tips.2024.05.007. Epub 2024 Jun 20.
6
Arrestins: A Small Family of Multi-Functional Proteins.
Int J Mol Sci. 2024 Jun 6;25(11):6284. doi: 10.3390/ijms25116284.
7
In-Cell Arrestin-Receptor Interaction Assays.
Curr Protoc. 2023 Oct;3(10):e890. doi: 10.1002/cpz1.890.
8
The Effect of Β-Arrestin2 Overexpression Regarding Viability and Temozolomide Treatment in High-Grade Glioma Cells.
Curr Health Sci J. 2022 Oct-Dec;48(4):407-412. doi: 10.12865/CHSJ.48.04.07. Epub 2022 Dec 31.
9
Plasma membrane preassociation drives β-arrestin coupling to receptors and activation.
Cell. 2023 May 11;186(10):2238-2255.e20. doi: 10.1016/j.cell.2023.04.018. Epub 2023 May 4.
10
Solo vs. Chorus: Monomers and Oligomers of Arrestin Proteins.
Int J Mol Sci. 2022 Jun 29;23(13):7253. doi: 10.3390/ijms23137253.

本文引用的文献

1
G protein-coupled receptor kinases: more than just kinases and not only for GPCRs.
Pharmacol Ther. 2012 Jan;133(1):40-69. doi: 10.1016/j.pharmthera.2011.08.001. Epub 2011 Aug 26.
4
The functional cycle of visual arrestins in photoreceptor cells.
Prog Retin Eye Res. 2011 Nov;30(6):405-30. doi: 10.1016/j.preteyeres.2011.07.002. Epub 2011 Jul 29.
5
Identification of arrestin-3-specific residues necessary for JNK3 kinase activation.
J Biol Chem. 2011 Aug 12;286(32):27894-901. doi: 10.1074/jbc.M111.260448. Epub 2011 Jun 29.
6
Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins.
J Biol Chem. 2011 Jul 8;286(27):24288-99. doi: 10.1074/jbc.M110.213835. Epub 2011 Apr 6.
7
Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes.
J Mol Biol. 2011 Feb 25;406(3):467-78. doi: 10.1016/j.jmb.2010.12.034. Epub 2011 Jan 6.
9
Custom-designed proteins as novel therapeutic tools? The case of arrestins.
Expert Rev Mol Med. 2010 Apr 23;12:e13. doi: 10.1017/S1462399410001444.
10
The role of arrestin alpha-helix I in receptor binding.
J Mol Biol. 2010 Jan 8;395(1):42-54. doi: 10.1016/j.jmb.2009.10.058. Epub 2009 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验