Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
J Biol Chem. 2012 Mar 16;287(12):9389-98. doi: 10.1074/jbc.M111.319475. Epub 2012 Jan 25.
Urea carboxylase (UC) is conserved in many bacteria, algae, and fungi and catalyzes the conversion of urea to allophanate, an essential step in the utilization of urea as a nitrogen source in these organisms. UC belongs to the biotin-dependent carboxylase superfamily and shares the biotin carboxylase (BC) and biotin carboxyl carrier protein (BCCP) domains with these other enzymes, but its carboxyltransferase (CT) domain is distinct. Currently, there is no information on the molecular basis of catalysis by UC. We report here the crystal structure of the Kluyveromyces lactis UC and biochemical studies to assess the structural information. Structural and sequence analyses indicate the CT domain of UC belongs to a large family of proteins with diverse functions, including the Bacillus subtilis KipA-KipI complex, which has important functions in sporulation regulation. A structure of the KipA-KipI complex is not currently available, and our structure provides a framework to understand the function of this complex. Most interestingly, in the structure the CT domain interacts with the BCCP domain, with biotin and a urea molecule bound at its active site. This structural information and our follow-up biochemical experiments provided molecular insights into the UC carboxyltransfer reaction. Several structural elements important for the UC carboxyltransfer reaction are found in other biotin-dependent carboxylases and might be conserved within this family, and our data could shed light on the mechanism of catalysis of these enzymes.
脲酶 (UC) 在许多细菌、藻类和真菌中都保守,能催化尿素转化为异丁烯酸,这是这些生物利用尿素作为氮源的必要步骤。UC 属于生物素依赖性羧化酶超家族,与这些其他酶共享生物素羧化酶 (BC) 和生物素羧基载体蛋白 (BCCP) 结构域,但它的羧基转移酶 (CT) 结构域不同。目前,UC 的催化分子基础尚不清楚。我们在此报告了 Kluyveromyces lactis UC 的晶体结构,并进行了生化研究以评估结构信息。结构和序列分析表明,UC 的 CT 结构域属于具有多种功能的蛋白大家族,包括枯草芽孢杆菌 KipA-KipI 复合物,它在孢子形成调节中具有重要功能。目前尚无法获得 KipA-KipI 复合物的结构,我们的结构为理解该复合物的功能提供了框架。最有趣的是,在结构中,CT 结构域与 BCCP 结构域相互作用,生物素和一个尿素分子结合在其活性位点。该结构信息和我们后续的生化实验为 UC 的羧基转移反应提供了分子见解。其他生物素依赖性羧化酶中发现了对 UC 羧基转移反应重要的几个结构元素,可能在该家族中保守,我们的数据可能为这些酶的催化机制提供启示。