Department of Mathematics, College of Science and Technology, Nihon University, Kanda, Chiyoda-ku, 101-8308, Japan.
Neural Comput. 2012 Jun;24(6):1569-610. doi: 10.1162/NECO_a_00271. Epub 2012 Feb 1.
The term algebraic statistics arises from the study of probabilistic models and techniques for statistical inference using methods from algebra and geometry (Sturmfels, 2009 ). The purpose of our study is to consider the generalization error and stochastic complexity in learning theory by using the log-canonical threshold in algebraic geometry. Such thresholds correspond to the main term of the generalization error in Bayesian estimation, which is called a learning coefficient (Watanabe, 2001a , 2001b ). The learning coefficient serves to measure the learning efficiencies in hierarchical learning models. In this letter, we consider learning coefficients for Vandermonde matrix-type singularities, by using a new approach: focusing on the generators of the ideal, which defines singularities. We give tight new bound values of learning coefficients for the Vandermonde matrix-type singularities and the explicit values with certain conditions. By applying our results, we can show the learning coefficients of three-layered neural networks and normal mixture models.
代数统计学这一术语源于对概率模型的研究,以及使用代数和几何方法进行统计推断的技术(Sturmfels,2009)。我们的研究目的是通过使用代数几何中的对数典范阈值来考虑学习理论中的泛化误差和随机复杂度。这样的阈值对应于贝叶斯估计中泛化误差的主项,这被称为学习系数(Watanabe,2001a,2001b)。学习系数用于衡量层次学习模型中的学习效率。在这封信中,我们通过一种新的方法来考虑 Vandermonde 矩阵型奇点的学习系数:关注定义奇点的理想的生成元。我们给出了 Vandermonde 矩阵型奇点的学习系数的紧的新界值和具有某些条件的显式值。通过应用我们的结果,我们可以展示三层神经网络和正态混合模型的学习系数。