Department of Cell and Molecular Biology and Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
Genetics. 2012 Apr;190(4):1365-77. doi: 10.1534/genetics.111.136184. Epub 2012 Jan 31.
Recent studies in Caenorhabditis elegans have revealed specific neural maintenance mechanisms that protect soma and neurites against mispositioning due to displacement stresses, such as muscle contraction. We report that C. elegans dystroglycan (DG) DGN-1 functions to maintain the position of lumbar neurons during late embryonic and larval development. In the absence of DGN-1 the cell bodies of multiple lumbar neuron classes are frequently displaced anterior of their normal positions. Early but not later embryonic panneural expression of DGN-1 rescues positional maintenance, suggesting that dystroglycan is required for establishment of a critical maintenance pathway that persists throughout later developmental stages. Lumbar neural maintenance requires only a membrane-tethered N-terminal domain of DGN-1 and may involve a novel extracellular partner for dystroglycan. A genetic screen for similar lumbar maintenance mutants revealed a role for the nesprin/SYNE family protein ANC-1 as well as for the extracellular protein DIG-1, previously implicated in lumbar neuron maintenance. The involvement of ANC-1 reveals a previously unknown role for nucleus-cytoskeleton interactions in neural maintenance. Genetic analysis indicates that lumbar neuron position is maintained in late embryos by parallel DGN-1/DIG-1 and ANC-1-dependent pathways, and in larvae by separate DGN-1 and ANC-1 pathways. The effect of muscle paralysis on late embryonic- or larval-stage maintenance defects in mutants indicates that lumbar neurons are subject to both muscle contraction-dependent and contraction-independent displacement stresses, and that different maintenance pathways may protect against specific types of displacement stress.
最近在秀丽隐杆线虫中的研究揭示了特定的神经维持机制,这些机制可防止因位移应激(例如肌肉收缩)而导致的体细胞和神经突错位。我们报告说,线虫肌营养不良糖蛋白(DG)DGN-1 在线虫胚胎晚期和幼虫发育过程中发挥作用,以维持腰神经元的位置。在缺乏 DGN-1 的情况下,多个腰神经元类别的细胞体经常被移位到其正常位置的前方。早期而非后期胚胎 Pan-neural 表达 DGN-1 可挽救位置维持,表明肌营养不良糖蛋白对于建立一个关键的维持途径是必需的,该途径在以后的发育阶段中持续存在。腰神经维持仅需要 DGN-1 的膜连接的 N 端结构域,并且可能涉及肌营养不良糖蛋白的新型细胞外配体。类似的腰维持突变体的遗传筛选揭示了 nesprin/SYNE 家族蛋白 ANC-1 的作用,以及先前涉及腰神经元维持的细胞外蛋白 DIG-1 的作用。ANC-1 的参与揭示了核-细胞骨架相互作用在神经维持中的先前未知作用。遗传分析表明,在晚期胚胎中,通过平行的 DGN-1/DIG-1 和 ANC-1 依赖性途径以及幼虫中的单独的 DGN-1 和 ANC-1 途径来维持腰神经元的位置。肌肉麻痹对突变体中晚期胚胎或幼虫期维持缺陷的影响表明,腰神经元受到肌肉收缩依赖性和非收缩依赖性位移应激的影响,并且不同的维持途径可能针对特定类型的位移应激提供保护。