Department of Biology, Tokyo Gakugei University, Koganei-shi, Tokyo, Japan.
Plant Signal Behav. 2012 Jan;7(1):38-42. doi: 10.4161/psb.7.1.18573.
The synthesis of DNA, RNA, and de novo proteins is fundamental for early development of the seedling after germination, but such processes release pyrophosphate (PPi) as a byproduct of ATP hydrolysis. The over-accumulation of the inhibitory metabolite PPi in the cytosol hinders these biosynthetic reactions. All living organisms possess ubiquitous enzymes collectively called inorganic pyrophosphatases (PPases), which catalyze the hydrolysis of PPi into two orthophosphate (Pi) molecules. Defects in PPase activity cause severe developmental defects and/or growth arrest in several organisms. In higher plants, a proton-translocating vacuolar PPase (H+-PPase) uses the energy of PPi hydrolysis to acidify the vacuole. However, the biological implications of PPi hydrolysis are vague due to the widespread belief that the major role of H+-PPase in plants is vacuolar acidification. We have shown that the Arabidopsis fugu5 mutant phenotype, caused by a defect in H+-PPase activity, is rescued by complementation with the yeast cytosolic PPase IPP1. In addition, our analyses have revealed that increased cytosolic PPi levels impair postgerminative development in fugu5 by inhibiting gluconeogenesis. This led us to the conclusion that the role of H+-PPase as a proton-pump is negligible. Here, we present further evidence of the growth-boosting effects of removing PPi in later stages of plant vegetative development, and briefly discuss the biological role of PPases and their potential applications in different disciplines and in various organisms.
DNA、RNA 和从头合成蛋白质的合成是种子萌发后幼苗早期发育的基础,但这些过程会释放焦磷酸(PPi)作为 ATP 水解的副产物。胞质溶胶中抑制代谢物 PPi 的过度积累阻碍了这些生物合成反应。所有生物都拥有普遍存在的酶,统称为无机焦磷酸酶(PPases),它们催化 PPi 水解成两个正磷酸盐(Pi)分子。PPase 活性的缺陷会导致几种生物的严重发育缺陷和/或生长停滞。在高等植物中,质子转运液泡 PPase(H+-PPase)利用 PPi 水解的能量使液泡酸化。然而,由于普遍认为 H+-PPase 在植物中的主要作用是液泡酸化,因此 PPi 水解的生物学意义尚不清楚。我们已经表明,由于 H+-PPase 活性缺陷导致的拟南芥 fugu5 突变体表型可以通过与酵母胞质 PPase IPP1 互补来挽救。此外,我们的分析还揭示了增加的胞质 PPi 水平通过抑制糖异生来损害 fugu5 的萌发后发育。这使我们得出结论,H+-PPase 作为质子泵的作用可以忽略不计。在这里,我们进一步提供了在植物营养生长后期去除 PPi 可促进生长的证据,并简要讨论了 PPases 的生物学作用及其在不同学科和各种生物中的潜在应用。