Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom.
J Neurosci. 2012 Feb 1;32(5):1634-42. doi: 10.1523/JNEUROSCI.4940-11.2012.
Many animals estimate their self-motion and the movement of external objects by exploiting panoramic patterns of visual motion. To probe how visual systems process compound motion patterns, superimposed visual gratings moving in different directions, plaid stimuli, have been successfully used in vertebrates. Surprisingly, nothing is known about how visually guided insects process plaids. Here, we explored in the blowfly how the well characterized yaw optomotor reflex and the activity of identified visual interneurons depend on plaid stimuli. We show that contrary to previous expectations, the yaw optomotor reflex shows a bimodal directional tuning for certain plaid stimuli. To understand the neural correlates of this behavior, we recorded the responses of a visual interneuron supporting the reflex, the H1 cell, which was also bimodally tuned to the plaid direction. Using a computational model, we identified the essential neural processing steps required to capture the observed response properties. These processing steps have functional parallels with mechanisms found in the primate visual system, despite different biophysical implementations. By characterizing other visual neurons supporting visually guided behaviors, we found responses that ranged from being bimodally tuned to the stimulus direction (component-selective), to responses that appear to be tuned to the direction of the global pattern (pattern-selective). Our results extend the current understanding of neural mechanisms of motion processing in insects, and indicate that the fly employs a wider range of behavioral responses to multiple motion cues than previously reported.
许多动物通过利用全景视觉运动模式来估计自身运动和外部物体的运动。为了探究视觉系统如何处理复合运动模式,在脊椎动物中成功使用了叠加在不同方向上运动的视觉光栅(grating),即条栅刺激。令人惊讶的是,对于视觉引导的昆虫如何处理条栅刺激,我们还知之甚少。在这里,我们在果蝇中探索了已被很好地描述的偏航光运动反射(yaw optomotor reflex)以及已鉴定的视觉中间神经元的活动如何依赖于条栅刺激。我们表明,与之前的预期相反,偏航光运动反射对某些条栅刺激表现出双峰方向调谐。为了理解这种行为的神经相关性,我们记录了支持反射的一个视觉中间神经元 H1 细胞的反应,该细胞也对条栅方向进行双峰调谐。使用计算模型,我们确定了捕获观察到的反应特性所需的基本神经处理步骤。这些处理步骤与灵长类动物视觉系统中发现的机制具有功能相似性,尽管存在不同的生物物理实现。通过表征支持视觉引导行为的其他视觉神经元,我们发现的反应范围从对刺激方向呈双峰调谐(成分选择性)到对全局图案方向呈调谐(图案选择性)。我们的结果扩展了对昆虫运动处理神经机制的现有理解,并表明与之前报道的相比,果蝇采用了更广泛的行为反应来处理多种运动线索。