Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA.
J Physiol. 2012 Apr 1;590(7):1757-70. doi: 10.1113/jphysiol.2011.222778. Epub 2012 Feb 6.
An understanding of the signalling events underlying neurovascular coupling mechanisms in the brain is a crucial step in the development of novel therapeutic approaches for the treatment of cerebrovascular-associated disorders. In this study we present an enhanced in vitro brain slice preparation from male Wistar rat cortical slices that incorporates haemodynamic variables (flow and pressure) into parenchymal arterioles resulting in the development of myogenic tone (28% from maximum dilatation). Moreover, we characterized flow-induced vascular responses, resulting in various degrees of vasoconstrictions and the response to 10 mM K(+) or astrocytic activation with the mGluR agonist, t-ACPD (100 μM), resulting in vasodilatations of 33.6±4.7% and 38.6±4.6%, respectively. Using fluorescence recovery, we determined perfusate velocity to calculate diameter changes under different experimental pH conditions. Using this approach, we demonstrate no significant differences between diameter changes measured using videomicroscopy or predicted from the velocity values obtained using fluorescence recovery after photobleaching. The model is further validated by demonstrating our ability to cannulate arterioles in two brain regions (cortex and supraoptic nucleus of the hypothalamus). Altogether, we believe this is the first study demonstrating successful cannulation and perfusion of parenchymal arterioles while monitoring/estimating luminal diameter and pressure under conditions where flow rates are controlled.
了解大脑神经血管耦合机制的信号事件是开发治疗脑血管相关疾病的新治疗方法的关键步骤。在这项研究中,我们提出了一种改良的雄性 Wistar 大鼠皮质脑片体外脑片制备方法,该方法将血液动力学变量(流量和压力)纳入实质小动脉,导致肌源性张力(最大扩张时的 28%)的发展。此外,我们还对血流诱导的血管反应进行了特征描述,导致不同程度的血管收缩,并对 10 mM K(+) 或星形胶质细胞激活剂 t-ACPD(100 μM)做出反应,分别导致 33.6±4.7%和 38.6±4.6%的血管扩张。使用荧光恢复,我们确定灌流速度以计算不同实验 pH 值条件下的直径变化。通过这种方法,我们证明了使用荧光恢复后光漂白获得的速度值预测的直径变化与使用视频显微镜测量的直径变化之间没有显著差异。该模型通过证明我们能够在两个脑区(皮质和下丘脑视上核)中对小动脉进行插管而得到进一步验证。总的来说,我们相信这是第一项成功地在控制血流速度的条件下,对实质小动脉进行插管和灌注,并同时监测/估计管腔直径和压力的研究。