Suppr超能文献

研究脑微循环神经血管耦联机制的体外先进方法。

Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation.

机构信息

Department of Physiology, Georgia Health Sciences University, Augusta, GA 30912, USA.

出版信息

J Physiol. 2012 Apr 1;590(7):1757-70. doi: 10.1113/jphysiol.2011.222778. Epub 2012 Feb 6.

Abstract

An understanding of the signalling events underlying neurovascular coupling mechanisms in the brain is a crucial step in the development of novel therapeutic approaches for the treatment of cerebrovascular-associated disorders. In this study we present an enhanced in vitro brain slice preparation from male Wistar rat cortical slices that incorporates haemodynamic variables (flow and pressure) into parenchymal arterioles resulting in the development of myogenic tone (28% from maximum dilatation). Moreover, we characterized flow-induced vascular responses, resulting in various degrees of vasoconstrictions and the response to 10 mM K(+) or astrocytic activation with the mGluR agonist, t-ACPD (100 μM), resulting in vasodilatations of 33.6±4.7% and 38.6±4.6%, respectively. Using fluorescence recovery, we determined perfusate velocity to calculate diameter changes under different experimental pH conditions. Using this approach, we demonstrate no significant differences between diameter changes measured using videomicroscopy or predicted from the velocity values obtained using fluorescence recovery after photobleaching. The model is further validated by demonstrating our ability to cannulate arterioles in two brain regions (cortex and supraoptic nucleus of the hypothalamus). Altogether, we believe this is the first study demonstrating successful cannulation and perfusion of parenchymal arterioles while monitoring/estimating luminal diameter and pressure under conditions where flow rates are controlled.

摘要

了解大脑神经血管耦合机制的信号事件是开发治疗脑血管相关疾病的新治疗方法的关键步骤。在这项研究中,我们提出了一种改良的雄性 Wistar 大鼠皮质脑片体外脑片制备方法,该方法将血液动力学变量(流量和压力)纳入实质小动脉,导致肌源性张力(最大扩张时的 28%)的发展。此外,我们还对血流诱导的血管反应进行了特征描述,导致不同程度的血管收缩,并对 10 mM K(+) 或星形胶质细胞激活剂 t-ACPD(100 μM)做出反应,分别导致 33.6±4.7%和 38.6±4.6%的血管扩张。使用荧光恢复,我们确定灌流速度以计算不同实验 pH 值条件下的直径变化。通过这种方法,我们证明了使用荧光恢复后光漂白获得的速度值预测的直径变化与使用视频显微镜测量的直径变化之间没有显著差异。该模型通过证明我们能够在两个脑区(皮质和下丘脑视上核)中对小动脉进行插管而得到进一步验证。总的来说,我们相信这是第一项成功地在控制血流速度的条件下,对实质小动脉进行插管和灌注,并同时监测/估计管腔直径和压力的研究。

相似文献

1
Advanced in vitro approach to study neurovascular coupling mechanisms in the brain microcirculation.
J Physiol. 2012 Apr 1;590(7):1757-70. doi: 10.1113/jphysiol.2011.222778. Epub 2012 Feb 6.
2
Astrocyte contributions to flow/pressure-evoked parenchymal arteriole vasoconstriction.
J Neurosci. 2015 May 27;35(21):8245-57. doi: 10.1523/JNEUROSCI.4486-14.2015.
3
Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.
J Neurosci. 2016 Dec 14;36(50):12624-12639. doi: 10.1523/JNEUROSCI.1300-16.2016. Epub 2016 Nov 7.
4
Isolation and Cannulation of Cerebral Parenchymal Arterioles.
J Vis Exp. 2016 May 23(111):53835. doi: 10.3791/53835.
5
Tone-dependent vascular responses to astrocyte-derived signals.
Am J Physiol Heart Circ Physiol. 2008 Jun;294(6):H2855-63. doi: 10.1152/ajpheart.91451.2007. Epub 2008 May 2.
6
Neuronal activity-related coupling in cortical arterioles: involvement of astrocyte-derived factors.
Exp Physiol. 2005 Jan;90(1):131-40. doi: 10.1113/expphysiol.2004.028811. Epub 2004 Oct 4.
9
Calcium dynamics in cortical astrocytes and arterioles during neurovascular coupling.
Circ Res. 2004 Nov 12;95(10):e73-81. doi: 10.1161/01.RES.0000148636.60732.2e. Epub 2004 Oct 21.
10
Regional heterogeneity in the mechanisms of myogenic tone in hamster arterioles.
Am J Physiol Heart Circ Physiol. 2017 Sep 1;313(3):H667-H675. doi: 10.1152/ajpheart.00183.2017. Epub 2017 Jun 30.

引用本文的文献

1
Dynamic Neuro-Glial-Vascular Responses in a Mouse Model of Vascular Cognitive Impairment.
Neuroglia. 2024 Dec;5(4):505-521. doi: 10.3390/neuroglia5040032. Epub 2024 Dec 19.
2
Mechanotransduction in Development: A Focus on Angiogenesis.
Biology (Basel). 2025 Mar 27;14(4):346. doi: 10.3390/biology14040346.
4
Astrocytes sense glymphatic-level shear stress through the interaction of sphingosine-1-phosphate with Piezo1.
iScience. 2024 May 21;27(6):110069. doi: 10.1016/j.isci.2024.110069. eCollection 2024 Jun 21.
5
Three potential neurovascular pathways driving the benefits of mindfulness meditation for older adults.
Front Aging Neurosci. 2023 Jun 29;15:1207012. doi: 10.3389/fnagi.2023.1207012. eCollection 2023.
6
Two decades of astrocytes in neurovascular coupling.
Front Netw Physiol. 2023 Apr 3;3:1162757. doi: 10.3389/fnetp.2023.1162757. eCollection 2023.
7
Intraluminal pressure elevates intracellular calcium and contracts CNS pericytes: Role of voltage-dependent calcium channels.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2216421120. doi: 10.1073/pnas.2216421120. Epub 2023 Feb 21.
8
The role of nitric oxide in flow-induced and myogenic responses in 1A, 2A, and 3A branches of the porcine middle cerebral artery.
J Appl Physiol (1985). 2022 Nov 1;133(5):1228-1236. doi: 10.1152/japplphysiol.00209.2022. Epub 2022 Oct 13.
9
Effects of choline containing phospholipids on the neurovascular unit: A review.
Front Cell Neurosci. 2022 Sep 23;16:988759. doi: 10.3389/fncel.2022.988759. eCollection 2022.
10
Advances in Hydrogel-Based Microfluidic Blood-Brain-Barrier Models in Oncology Research.
Pharmaceutics. 2022 May 5;14(5):993. doi: 10.3390/pharmaceutics14050993.

本文引用的文献

2
Isolated human and rat cerebral arteries constrict to increases in flow: role of 20-HETE and TP receptors.
J Cereb Blood Flow Metab. 2011 Oct;31(10):2096-105. doi: 10.1038/jcbfm.2011.74. Epub 2011 May 25.
3
A guide to delineate the logic of neurovascular signaling in the brain.
Front Neuroenergetics. 2011 Apr 25;3:1. doi: 10.3389/fnene.2011.00001. eCollection 2011.
4
Endothelial SK(Ca) and IK(Ca) channels regulate brain parenchymal arteriolar diameter and cortical cerebral blood flow.
J Cereb Blood Flow Metab. 2011 May;31(5):1175-86. doi: 10.1038/jcbfm.2010.214. Epub 2010 Dec 22.
5
Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization.
Am J Physiol Heart Circ Physiol. 2011 Mar;300(3):H803-12. doi: 10.1152/ajpheart.00760.2010. Epub 2010 Dec 10.
6
Pericytes in capillaries are contractile in vivo, but arterioles mediate functional hyperemia in the mouse brain.
Proc Natl Acad Sci U S A. 2010 Dec 21;107(51):22290-5. doi: 10.1073/pnas.1011321108. Epub 2010 Dec 6.
7
In vitro lung slices: a powerful approach for assessment of lung pathophysiology.
Expert Rev Mol Diagn. 2010 May;10(4):501-8. doi: 10.1586/erm.10.21.
8
Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction.
Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3811-6. doi: 10.1073/pnas.0914722107. Epub 2010 Feb 2.
9
TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure.
Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H1096-102. doi: 10.1152/ajpheart.00241.2009. Epub 2009 Jul 17.
10
Regulation of intracerebral arteriolar tone by K(v) channels: effects of glucose and PKC.
Am J Physiol Cell Physiol. 2009 Sep;297(3):C788-96. doi: 10.1152/ajpcell.00148.2009. Epub 2009 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验