Department of Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA.
Infect Immun. 2012 Apr;80(4):1373-80. doi: 10.1128/IAI.06316-11. Epub 2012 Feb 6.
In coordination with the ppGpp alarmone, the RNA polymerase regulatory protein DksA controls the stringent response of eubacteria, negatively regulating transcription of translational machinery and directly activating amino acid promoters and de novo amino acid biosynthesis. Given the effects of nitric oxide (NO) on amino acid biosynthetic pathways and the intimate relationship of DksA with amino acid synthesis and transport, we tested whether DksA contributes to the resistance of Salmonella to reactive nitrogen species (RNS). Our studies show that the zinc finger predicted to position DksA in the secondary channel of the RNA polymerase is essential for the resistance of Salmonella enterica serovar Typhimurium to RNS in a murine model of systemic salmonellosis. Despite exhibiting auxotrophies for various amino acids, ΔdksA mutant Salmonella strains regain virulence in mice lacking inducible NO synthase (iNOS). DksA is also important for growth of this intracellular pathogen in the presence of NO congeners generated by iNOS during the innate response of murine macrophages. Accordingly, dksA mutant Salmonella strains are hypersusceptible to chemically generated NO, a phenotype that can be prevented by adding amino acids. The DksA-dependent antinitrosative defenses do not rely on the Hmp flavohemoprotein that detoxifies NO to NO(3)(-) and appear to operate independently of the ppGpp alarmone. Our investigations are consistent with a model by which NO produced in the innate response to Salmonella exerts considerable pressure on amino acid biosynthesis. The cytotoxicity of NO against Salmonella amino acid biosynthetic pathways is antagonized in great part by the DksA-dependent regulation of amino acid biosynthesis and transport.
与 ppGpp 警报素协同作用,RNA 聚合酶调节蛋白 DksA 控制原核生物的严格反应,负调控翻译机制的转录,并直接激活氨基酸启动子和从头氨基酸生物合成。鉴于一氧化氮 (NO) 对氨基酸生物合成途径的影响以及 DksA 与氨基酸合成和运输的密切关系,我们测试了 DksA 是否有助于沙门氏菌抵抗活性氮物种 (RNS)。我们的研究表明,预测 DksA 在 RNA 聚合酶的二级通道中定位的锌指对于沙门氏菌肠亚种 Typhimurium 在全身性沙门氏菌病的小鼠模型中抵抗 RNS 是必不可少的。尽管表现出对各种氨基酸的营养缺陷,但ΔdksA 突变沙门氏菌菌株在缺乏诱导型一氧化氮合酶 (iNOS) 的小鼠中恢复了毒力。在小鼠巨噬细胞固有反应中由 iNOS 生成的 NO 同系物存在的情况下,DksA 对于这种细胞内病原体的生长也很重要。因此,dksA 突变沙门氏菌菌株对化学产生的 NO 高度敏感,这一表型可以通过添加氨基酸来预防。DksA 依赖的抗亚硝化防御不依赖于 Hmp 黄素蛋白,该蛋白将 NO 解毒为 NO(3)(-),并且似乎独立于 ppGpp 警报素运作。我们的研究结果与一种模型一致,即沙门氏菌固有反应产生的 NO 对氨基酸生物合成施加了相当大的压力。NO 对沙门氏菌氨基酸生物合成途径的细胞毒性在很大程度上被 DksA 依赖的氨基酸生物合成和运输的调节所拮抗。