Suppr超能文献

使用磁性细胞分离器去除感染疟原虫的红细胞:一项计算研究。

Removal of malaria-infected red blood cells using magnetic cell separators: A computational study.

作者信息

Kim Jeongho, Massoudi Mehrdad, Antaki James F, Gandini Alberto

机构信息

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213 USA.

出版信息

Appl Math Comput. 2012 Feb 15;218(12):6841-6850. doi: 10.1016/j.amc.2011.12.057.

Abstract

High gradient magnetic field separators have been widely used in a variety of biological applications. Recently, the use of magnetic separators to remove malaria-infected red blood cells (pRBCs) from blood circulation in patients with severe malaria has been proposed in a dialysis-like treatment. The capture efficiency of this process depends on many interrelated design variables and constraints such as magnetic pole array pitch, chamber height, and flow rate. In this paper, we model the malaria-infected RBCs (pRBCs) as paramagnetic particles suspended in a Newtonian fluid. Trajectories of the infected cells are numerically calculated inside a micro-channel exposed to a periodic magnetic field gradient. First-order stiff ordinary differential equations (ODEs) governing the trajectory of particles under periodic magnetic fields due to an array of wires are solved numerically using the 1(st) -5(th) order adaptive step Runge-Kutta solver. The numerical experiments show that in order to achieve a capture efficiency of 99% for the pRBCs it is required to have a longer length than 80 mm; this implies that in principle, using optimization techniques the length could be adjusted, i.e., shortened to achieve 99% capture efficiency of the pRBCs.

摘要

高梯度磁场分离器已广泛应用于各种生物应用中。最近,有人提出在一种类似透析的治疗方法中,使用磁分离器从重症疟疾患者的血液循环中去除感染疟疾的红细胞(pRBCs)。这个过程的捕获效率取决于许多相互关联的设计变量和限制因素,如磁极阵列间距、腔室高度和流速。在本文中,我们将感染疟疾的红细胞(pRBCs)建模为悬浮在牛顿流体中的顺磁性颗粒。在暴露于周期性磁场梯度的微通道内,对受感染细胞的轨迹进行了数值计算。使用一阶刚性常微分方程(ODEs)来描述由于一组导线产生的周期性磁场作用下颗粒的轨迹,并使用一阶至五阶自适应步长龙格 - 库塔求解器进行数值求解。数值实验表明,为了使pRBCs的捕获效率达到99%,需要有超过80毫米的长度;这意味着原则上,使用优化技术可以调整长度,即缩短长度以实现pRBCs 99%的捕获效率。

相似文献

1
Removal of malaria-infected red blood cells using magnetic cell separators: A computational study.
Appl Math Comput. 2012 Feb 15;218(12):6841-6850. doi: 10.1016/j.amc.2011.12.057.
2
Design of microfluidic channels for magnetic separation of malaria-infected red blood cells.
Microfluid Nanofluidics. 2016;20(2). doi: 10.1007/s10404-016-1707-4. Epub 2016 Feb 2.
3
Non-Newtonian Nano-Fluids in Blasius and Sakiadis Flows Influenced by Magnetic Field.
Nanomaterials (Basel). 2022 Nov 29;12(23):4254. doi: 10.3390/nano12234254.
4
A thermodynamic inspired AI based search algorithm for solving ordinary differential equations.
Sci Rep. 2025 May 25;15(1):18141. doi: 10.1038/s41598-025-03093-6.
6
Numerical analysis of bioconvective heat transport through Casson nanofluid over a thin needle.
J Biol Phys. 2024 Nov 25;51(1):3. doi: 10.1007/s10867-024-09664-4.
8
High throughput single-cell and multiple-cell micro-encapsulation.
J Vis Exp. 2012 Jun 15(64):e4096. doi: 10.3791/4096.
9
Mathematical modeling of malaria transmission dynamics in humans with mobility and control states.
Infect Dis Model. 2023 Aug 21;8(4):1015-1031. doi: 10.1016/j.idm.2023.08.005. eCollection 2023 Dec.

引用本文的文献

1
On-chip magnetophoretic capture in a model of malaria-infected red blood cells.
Biotechnol Bioeng. 2022 Apr;119(4):1129-1141. doi: 10.1002/bit.28030. Epub 2022 Jan 25.
2
Magnetophoretic and spectral characterization of oxyhemoglobin and deoxyhemoglobin: Chemical versus enzymatic processes.
PLoS One. 2021 Sep 3;16(9):e0257061. doi: 10.1371/journal.pone.0257061. eCollection 2021.
3
Past, Present, and Future of Affinity-based Cell Separation Technologies.
Acta Biomater. 2020 Aug;112:29-51. doi: 10.1016/j.actbio.2020.05.004. Epub 2020 May 19.
4
Representative subsampling of sedimenting blood.
Proc Math Phys Eng Sci. 2019 Jul;475(2227):20190223. doi: 10.1098/rspa.2019.0223. Epub 2019 Jul 24.
5
Inorganic Complexes and Metal-Based Nanomaterials for Infectious Disease Diagnostics.
Chem Rev. 2019 Jan 23;119(2):1456-1518. doi: 10.1021/acs.chemrev.8b00136. Epub 2018 Dec 4.
7
Design of microfluidic channels for magnetic separation of malaria-infected red blood cells.
Microfluid Nanofluidics. 2016;20(2). doi: 10.1007/s10404-016-1707-4. Epub 2016 Feb 2.
8
Hemozoin "knobs" in Opisthorchis felineus infected liver.
Parasit Vectors. 2015 Sep 17;8:459. doi: 10.1186/s13071-015-1061-5.
9
Fundamentals and application of magnetic particles in cell isolation and enrichment: a review.
Rep Prog Phys. 2015 Jan;78(1):016601. doi: 10.1088/0034-4885/78/1/016601. Epub 2014 Dec 4.
10
A numerical study of blood flow using mixture theory.
Int J Eng Sci. 2014 Mar 1;76:56-72. doi: 10.1016/j.ijengsci.2013.12.001.

本文引用的文献

2
Considerations on the use of adjunct red blood cell exchange transfusion in the treatment of severe Plasmodium falciparum malaria.
Transfusion. 2010 Apr;50(4):875-80. doi: 10.1111/j.1537-2995.2009.02530.x. Epub 2009 Dec 10.
4
Malaria: severe, life-threatening.
BMJ Clin Evid. 2007 Jul 1;2007:0913.
6
Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows.
Microvasc Res. 2009 May;77(3):265-72. doi: 10.1016/j.mvr.2009.01.010. Epub 2009 Feb 4.
7
Magnetic susceptibility of iron in malaria-infected red blood cells.
Biochim Biophys Acta. 2009 Feb;1792(2):93-9. doi: 10.1016/j.bbadis.2008.11.001. Epub 2008 Nov 12.
9
Magnetic separation: a highly effective method for synchronization of cultured erythrocytic Plasmodium falciparum.
Parasitol Res. 2008 May;102(6):1195-200. doi: 10.1007/s00436-008-0893-8. Epub 2008 Mar 5.
10
Three-dimensional modeling of a portable medical device for magnetic separation of particles from biological fluids.
Phys Med Biol. 2007 Sep 7;52(17):5205-18. doi: 10.1088/0031-9155/52/17/007. Epub 2007 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验