Kim Jeongho, Massoudi Mehrdad, Antaki James F, Gandini Alberto
Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213 USA.
Appl Math Comput. 2012 Feb 15;218(12):6841-6850. doi: 10.1016/j.amc.2011.12.057.
High gradient magnetic field separators have been widely used in a variety of biological applications. Recently, the use of magnetic separators to remove malaria-infected red blood cells (pRBCs) from blood circulation in patients with severe malaria has been proposed in a dialysis-like treatment. The capture efficiency of this process depends on many interrelated design variables and constraints such as magnetic pole array pitch, chamber height, and flow rate. In this paper, we model the malaria-infected RBCs (pRBCs) as paramagnetic particles suspended in a Newtonian fluid. Trajectories of the infected cells are numerically calculated inside a micro-channel exposed to a periodic magnetic field gradient. First-order stiff ordinary differential equations (ODEs) governing the trajectory of particles under periodic magnetic fields due to an array of wires are solved numerically using the 1(st) -5(th) order adaptive step Runge-Kutta solver. The numerical experiments show that in order to achieve a capture efficiency of 99% for the pRBCs it is required to have a longer length than 80 mm; this implies that in principle, using optimization techniques the length could be adjusted, i.e., shortened to achieve 99% capture efficiency of the pRBCs.
高梯度磁场分离器已广泛应用于各种生物应用中。最近,有人提出在一种类似透析的治疗方法中,使用磁分离器从重症疟疾患者的血液循环中去除感染疟疾的红细胞(pRBCs)。这个过程的捕获效率取决于许多相互关联的设计变量和限制因素,如磁极阵列间距、腔室高度和流速。在本文中,我们将感染疟疾的红细胞(pRBCs)建模为悬浮在牛顿流体中的顺磁性颗粒。在暴露于周期性磁场梯度的微通道内,对受感染细胞的轨迹进行了数值计算。使用一阶刚性常微分方程(ODEs)来描述由于一组导线产生的周期性磁场作用下颗粒的轨迹,并使用一阶至五阶自适应步长龙格 - 库塔求解器进行数值求解。数值实验表明,为了使pRBCs的捕获效率达到99%,需要有超过80毫米的长度;这意味着原则上,使用优化技术可以调整长度,即缩短长度以实现pRBCs 99%的捕获效率。