Suppr超能文献

利用功能特征鉴定用于乳腺癌、髓性白血病和前列腺癌的再定位药物。

Using functional signatures to identify repositioned drugs for breast, myelogenous leukemia and prostate cancer.

机构信息

Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2012 Feb;8(2):e1002347. doi: 10.1371/journal.pcbi.1002347. Epub 2012 Feb 9.

Abstract

The cost and time to develop a drug continues to be a major barrier to widespread distribution of medication. Although the genomic revolution appears to have had little impact on this problem, and might even have exacerbated it because of the flood of additional and usually ineffective leads, the emergence of high throughput resources promises the possibility of rapid, reliable and systematic identification of approved drugs for originally unintended uses. In this paper we develop and apply a method for identifying such repositioned drug candidates against breast cancer, myelogenous leukemia and prostate cancer by looking for inverse correlations between the most perturbed gene expression levels in human cancer tissue and the most perturbed expression levels induced by bioactive compounds. The method uses variable gene signatures to identify bioactive compounds that modulate a given disease. This is in contrast to previous methods that use small and fixed signatures. This strategy is based on the observation that diseases stem from failed/modified cellular functions, irrespective of the particular genes that contribute to the function, i.e., this strategy targets the functional signatures for a given cancer. This function-based strategy broadens the search space for the effective drugs with an impressive hit rate. Among the 79, 94 and 88 candidate drugs for breast cancer, myelogenous leukemia and prostate cancer, 32%, 13% and 17% respectively are either FDA-approved/in-clinical-trial drugs, or drugs with suggestive literature evidences, with an FDR of 0.01. These findings indicate that the method presented here could lead to a substantial increase in efficiency in drug discovery and development, and has potential application for the personalized medicine.

摘要

开发药物的成本和时间仍然是药物广泛分发的主要障碍。尽管基因组革命似乎对这个问题几乎没有影响,而且由于大量额外的、通常无效的先导化合物的出现,甚至可能使这个问题恶化,但高通量资源的出现有望实现快速、可靠和系统地确定最初非预期用途的已批准药物。在本文中,我们开发并应用了一种方法,通过寻找人类癌症组织中受干扰最严重的基因表达水平与生物活性化合物诱导的受干扰最严重的表达水平之间的反相关关系,来鉴定针对乳腺癌、髓性白血病和前列腺癌的重新定位药物候选物。该方法使用可变基因特征来识别调节特定疾病的生物活性化合物。这与以前使用小而固定特征的方法不同。该策略基于这样一种观察,即疾病源于失败/修饰的细胞功能,而与促成该功能的特定基因无关,即该策略针对特定癌症的功能特征。这种基于功能的策略拓宽了有效药物的搜索空间,具有令人印象深刻的命中率。在针对乳腺癌、髓性白血病和前列腺癌的 79、94 和 88 种候选药物中,分别有 32%、13%和 17%的候选药物是 FDA 批准/临床试验药物,或具有提示性文献证据的药物,FDR 为 0.01。这些发现表明,本文提出的方法可能会显著提高药物发现和开发的效率,并有可能应用于个性化医疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d885/3276504/6bce4c4e3551/pcbi.1002347.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验