Suppr超能文献

探讨在疟疾高度流行地区,医生编码与 InterVA 之间因疟疾导致死亡的认定存在差异的原因,分析叙事自由文本所起的作用。

Exploring the role narrative free-text plays in discrepancies between physician coding and the InterVA regarding determination of malaria as cause of death, in a malaria holo-endemic region.

机构信息

Institute of Public Health, University Hospital of Heidelberg, Heidelberg, Germany.

出版信息

Malar J. 2012 Feb 21;11:51. doi: 10.1186/1475-2875-11-51.

Abstract

BACKGROUND

In countries where tracking mortality and clinical cause of death are not routinely undertaken, gathering verbal autopsies (VA) is the principal method of estimating cause of death. The most common method for determining probable cause of death from the VA interview is Physician-Certified Verbal Autopsy (PCVA). A recent alternative method to interpret Verbal Autopsy (InterVA) is a computer model using a Bayesian approach to derive posterior probabilities for causes of death, given an a priori distribution at population level and a set of interview-based indicators. The model uses the same input information as PCVA, with the exception of narrative text information, which physicians can consult but which were not inputted into the model. Comparing the results of physician coding with the model, large differences could be due to difficulties in diagnosing malaria, especially in holo-endemic regions. Thus, the aim of the study was to explore whether physicians' access to electronically unavailable narrative text helps to explain the large discrepancy in malaria cause-specific mortality fractions (CSMFs) in physician coding versus the model.

METHODS

Free-texts of electronically available records (N = 5,649) were summarised and incorporated into the InterVA version 3 (InterVA-3) for three sub-groups: (i) a 10%-representative subsample (N = 493) (ii) records diagnosed as malaria by physicians and not by the model (N = 1035), and (iii) records diagnosed by the model as malaria, but not by physicians (N = 332). CSMF results before and after free-text incorporation were compared.

RESULTS

There were changes of between 5.5-10.2% between models before and after free-text incorporation. No impact on malaria CSMFs was seen in the representative sub-sample, but the proportion of malaria as cause of death increased in the physician sub-sample (2.7%) and saw a large decrease in the InterVA subsample (9.9%). Information on 13/106 indicators appeared at least once in the free-texts that had not been matched to any item in the structured, electronically available portion of the Nouna questionnaire.

DISCUSSION

Free-texts are helpful in gathering information not adequately captured in VA questionnaires, though access to free-text does not explain differences in physician and model determination of malaria as cause of death.

摘要

背景

在没有常规进行死亡率和临床死因追踪的国家,收集口头尸检(VA)是估计死因的主要方法。从 VA 访谈中确定可能死因的最常用方法是医师认证的口头尸检(PCVA)。最近,一种替代的解释口头尸检(InterVA)的方法是一种使用贝叶斯方法的计算机模型,根据人群水平的先验分布和一组基于访谈的指标,得出死因的后验概率。该模型使用与 PCVA 相同的输入信息,除了医师可以查阅但未输入模型的叙述性文本信息。将医师编码的结果与模型进行比较,差异较大可能是由于诊断疟疾的困难,特别是在全疫区。因此,本研究的目的是探讨医师是否可以访问电子上不可用的叙述性文本,以解释医师编码与模型之间疟疾死因特异性死亡率分数(CSMF)的巨大差异。

方法

对电子上可用记录的自由文本(N=5649)进行总结,并纳入 InterVA 版本 3(InterVA-3)中,分为三个亚组:(i)10%的代表性样本(N=493);(ii)医师诊断为疟疾但模型未诊断的记录(N=1035);以及(iii)模型诊断为疟疾但医师未诊断的记录(N=332)。比较自由文本纳入前后的 CSMF 结果。

结果

自由文本纳入前后模型之间的变化在 5.5%至 10.2%之间。代表性子样本中未发现疟疾 CSMF 有影响,但医师子样本中疟疾作为死因的比例增加(2.7%),而模型子样本中疟疾的比例大幅下降(9.9%)。在自由文本中出现了 13/106 个指标中的至少一个信息,这些信息与 Nouna 问卷的电子可用部分的任何项目都不匹配。

讨论

自由文本有助于收集口头尸检问卷中未充分捕获的信息,但访问自由文本并不能解释医师和模型对疟疾作为死因的判断差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03c0/3359180/2e0749a35b75/1475-2875-11-51-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验