Department of Chemistry, Wayne State University, Detroit, MI 48202, USA.
Phys Chem Chem Phys. 2012 Apr 7;14(13):4517-26. doi: 10.1039/c2cp23794f. Epub 2012 Feb 24.
Noncovalent interactions between alkali metal cations and the various low-energy tautomeric forms of cytosine are investigated both experimentally and theoretically. Threshold collision-induced dissociation (CID) of M(+)(cytosine) complexes with Xe is studied using guided ion beam tandem mass spectrometry, where M(+) = Li(+), Na(+), and K(+). In all cases, the only dissociation pathway observed corresponds to endothermic loss of the intact cytosine molecule. The cross-section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) for the M(+)(cytosine) complexes after accounting for the effects of multiple ion-neutral collisions, the kinetic and internal energy distributions of the reactants, and dissociation lifetimes. Ab initio calculations are performed at the MP2(full)/6-31G* level of theory to determine the structures of the neutral cytosine tautomers, the M(+)(cytosine) complexes, and the TSs for unimolecular tautomerization. The molecular parameters derived from these structures are employed for the calculation of the unimolecular rates for tautomerization and the thermochemical analysis of the experimental data. Theoretical BDEs of the various M(+)(cytosine) complexes and the energy barriers for the unimolecular tautomerization of these complexes are determined at MP2(full)/6-311+G(2d,2p) level of theory using the MP2(full)/6-31G* optimized geometries. In addition, BDEs for the Li(+)(cytosine) complexes are also determined at the G3 level of theory. Based upon the tautomeric mixture generated upon thermal vaporization of cytosine, calculated M(+)-cytosine BDEs and barriers to tautomerization for the low-energy tautomeric forms of M(+)(cytosine), and measured thresholds for CID of M(+)(cytosine) complexes, we conclude that tautomerization occurs during both complex formation and CID.
碱金属阳离子与胞嘧啶的各种低能互变异构形式之间的非共价相互作用同时通过实验和理论进行了研究。使用导向离子束串联质谱法研究了 Xe 中 M(+)(胞嘧啶)配合物的阈碰撞诱导解离 (CID),其中 M(+) = Li(+)、Na(+)和 K(+)。在所有情况下,观察到的唯一解离途径对应于内热损失完整的胞嘧啶分子。在考虑了多次离子-中性碰撞、反应物的动力学和内部能量分布以及解离寿命的影响后,将截面阈值解释为 M(+)(胞嘧啶)配合物的 0 和 298 K 键离解能 (BDE)。在 MP2(full)/6-31G理论水平上进行了从头算计算,以确定中性胞嘧啶互变异构体、M(+)(胞嘧啶)配合物和单分子互变异构化的 TS 的结构。从这些结构中得出的分子参数用于计算互变异构化的单分子速率和实验数据的热化学分析。在 MP2(full)/6-311+G(2d,2p)理论水平上,使用 MP2(full)/6-31G优化的几何结构,确定了各种 M(+)(胞嘧啶)配合物的理论 BDE 和这些配合物的单分子互变异构化的能垒。此外,还在 G3 理论水平上确定了 Li(+)(胞嘧啶)配合物的 BDE。基于胞嘧啶热蒸发产生的互变异构混合物,计算的 M(+)-胞嘧啶 BDE 和低能互变异构形式的 M(+)(胞嘧啶)的互变异构化能垒,以及 M(+)(胞嘧啶)配合物 CID 的测量阈值,我们得出结论,互变异构化发生在配合物形成和 CID 期间。