Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States.
Biochemistry. 2012 Mar 20;51(11):2298-308. doi: 10.1021/bi3000897. Epub 2012 Mar 6.
The Ni-containing active site of Klebsiella aerogenes urease is assembled through the concerted action of the UreD, UreE, UreF, and UreG accessory proteins. UreE functions as a metallochaperone that delivers Ni to a UreD-UreF-UreG complex bound to urease apoprotein, with UreG serving as a GTPase during enzyme activation. This study focuses on the role of UreF, previously proposed to act as a GTPase activating protein (GAP) of UreG. Sixteen conserved UreF surface residues that may play roles in protein-protein interactions were independently changed to Ala. When produced in the context of the entire urease gene cluster, cell-free extracts of nine site-directed mutants had less than 10% of the wild-type urease activity. Enrichment of the variant forms of UreF, as the UreE-F fusion proteins, uniformly resulted in copurification of UreD and urease apoprotein, whereas UreG bound to only a subset of the species. Notably, weakened interaction with UreG correlated with the low-activity mutants. The affected residues in UreF map to a distinct surface on the crystal structure, defining the UreG binding site. In contrast to the hypothesis that UreF is a GAP, the UreD-UreF-UreG-urease apoprotein complex containing K165A UreF exhibited significantly greater levels of GTPase activity than that containing the wild-type protein. Additional studies demonstrated the UreG GTPase activity was largely uncoupled from urease activation for the complex containing this UreF variant. Further experiments with these complexes provided evidence that UreF gates the GTPase activity of UreG to enhance the fidelity of urease metallocenter assembly, especially in the presence of the noncognate metal Zn.
产碱杆菌脲酶的含镍活性位点是通过 UreD、UreE、UreF 和 UreG 辅助蛋白的协同作用组装而成的。UreE 作为金属伴侣蛋白,将 Ni 递送到与脲酶脱辅基蛋白结合的 UreD-UreF-UreG 复合物中,而 UreG 在酶激活过程中充当 GTPase。本研究关注的是 UreF 的作用,此前它被提议作为 UreG 的 GTPase 激活蛋白 (GAP)。16 个保守的 UreF 表面残基可能在蛋白-蛋白相互作用中发挥作用,它们被独立突变为 Ala。当在整个脲酶基因簇的背景下产生时,九个定点突变体的无细胞提取物的活性不到野生型脲酶的 10%。作为 UreE-F 融合蛋白,变体形式的 UreF 的富集均匀地导致 UreD 和脲酶脱辅基蛋白的共纯化,而 UreG 仅与亚类结合。值得注意的是,与 UreG 的相互作用减弱与低活性突变体相关。UreF 中的受影响残基映射到晶体结构的一个独特表面,定义了 UreG 结合位点。与 UreF 是 GAP 的假设相反,含有 K165A UreF 的 UreD-UreF-UreG-脲酶脱辅基蛋白复合物表现出比含有野生型蛋白的复合物更高水平的 GTPase 活性。进一步的研究表明,对于含有这种 UreF 变体的复合物,UreG 的 GTPase 活性在很大程度上与脲酶激活解耦。用这些复合物进行的进一步实验提供了证据,证明 UreF 控制 UreG 的 GTPase 活性以增强脲酶金属中心组装的保真度,特别是在存在非配位金属 Zn 的情况下。