Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Instituto de Salud Carlos III, Barcelona, Spain.
J Physiol. 2012 Apr 15;590(8):1943-56. doi: 10.1113/jphysiol.2011.224345. Epub 2012 Feb 27.
Purinergic and nitrergic co-transmission is the dominant mechanism responsible for neural-mediated smooth muscle relaxation in the gastrointestinal tract. The aim of the present paper was to test whether or not P2Y(1) receptors are involved in purinergic neurotransmission using P2Y(1)(−/−) knock-out mice. Tension and microelectrode recordings were performed on colonic strips. In wild type (WT) animals, electrical field stimulation (EFS) caused an inhibitory junction potential (IJP) that consisted of a fast IJP (MRS2500 sensitive, 1 μm) followed by a sustained IJP (N(ω)-nitro-L-arginine (L-NNA) sensitive, 1 mm). The fast component of the IJP was absent in P2Y(1)(−/−) mice whereas the sustained IJP (L-NNA sensitive) was recorded. In WT animals, EFS-induced inhibition of spontaneous motility was blocked by the consecutive addition of L-NNA and MRS2500. In P2Y(1)(−/−) mice, EFS responses were completely blocked by L-NNA. In WT and P2Y(1)(−/−) animals, L-NNA induced a smooth muscle depolarization but ‘spontaneous' IJP (MRS2500 sensitive) could be recorded in WT but not in P2Y(1)(−/−) animals. Finally, in WT animals, 1 μm MRS2365 caused a smooth muscle hyperpolarization that was blocked by 1 μm MRS2500. In contrast, 1 μm MRS2365 did not modify smooth muscle resting membrane potential in P2Y(1)(−/−) mice. β-Nicotinamide adenine dinucleotide (β-NAD, 1 mm) partially mimicked the effect of MRS2365. We conclude that P2Y(1) receptors mediate purinergic neurotransmission in the gastrointestinal tract and β-NAD partially fulfils the criteria to participate in rodent purinergic neurotransmission. The P2Y(1)(−/−) mouse is a useful animal model to study the selective loss of purinergic neurotransmission.
嘌呤能和硝氮能共同传递是胃肠道神经介导平滑肌松弛的主要机制。本文旨在测试 P2Y(1) 受体是否参与嘌呤能神经传递,使用 P2Y(1)(−/−) 敲除小鼠。对结肠条带进行张力和微电极记录。在野生型 (WT) 动物中,电刺激 (EFS) 引起抑制性突触后电位 (IJP),包括快速 IJP (MRS2500 敏感,1μm) 和持续 IJP (N(ω)-硝基-L-精氨酸 (L-NNA) 敏感,1mm)。快速 IJP 缺失在 P2Y(1)(−/−) 小鼠中,而持续 IJP (L-NNA 敏感) 则被记录。在 WT 动物中,EFS 诱导的自发性运动抑制被连续加入 L-NNA 和 MRS2500 阻断。在 P2Y(1)(−/−) 小鼠中,EFS 反应完全被 L-NNA 阻断。在 WT 和 P2Y(1)(−/−) 动物中,L-NNA 诱导平滑肌去极化,但在 WT 动物中可以记录到“自发性”IJP (MRS2500 敏感),而在 P2Y(1)(−/−) 动物中则不能。最后,在 WT 动物中,1μm MRS2365 引起平滑肌超极化,被 1μm MRS2500 阻断。相比之下,1μm MRS2365 不能改变 P2Y(1)(−/−) 小鼠的平滑肌静息膜电位。β-烟酰胺腺嘌呤二核苷酸 (β-NAD,1mm) 部分模拟了 MRS2365 的作用。我们得出结论,P2Y(1) 受体介导胃肠道中的嘌呤能神经传递,β-NAD 部分满足参与啮齿动物嘌呤能神经传递的标准。P2Y(1)(−/−) 小鼠是研究嘌呤能神经传递选择性缺失的有用动物模型。