Department of Chemistry and Biochemistry, The Florida State University, Tallahassee, Florida 32306, USA.
J Chem Phys. 2012 Feb 28;136(8):084502. doi: 10.1063/1.3687239.
The Kirkwood g-factor that determines the long wavelength dielectric constant of a simple, isotropic, translationally invariant dipolar fluid is given by an integral of a dipole-dipole correlation function over a spherical region of a nonzero radius R(K) chosen such that any further increase in the radius leads to no change in the value of the integral, thereby defining a Kirkwood correlation length R(K). For radii less than the correlation length the integral defines a radius dependent (nonlocal) Kirkwood g-factor, implying a nonlocal dielectric function. The nonlocal nature of these quantities has important consequences for the determination of the long wavelength dielectric function from dipole fluctuations via the Kirkwood-Fröhlich connection. The dipole-dipole correlation function (the volume dipole auto-correlation function) commonly used in this determination involves particles residing solely within a sphere of radius R, unlike the correct correlation function which involves either a single particle with those particles in a spherical volume of radius R(K) or those particles in a spherical volume of radius R with those residing within a spherical volume of radius R+R(K). A procedure is suggested for extracting the infinite system dipole-dipole correlation function from results of simulations performed on finite spherical samples. Using some results reported in the recent literature, relative to the accurate correlation function the commonly used correlation function ranges from 27% too small for a sphere having a radius comparable to the Kirkwood correlation length to 4% too small at a radius of seven times that correlation length. As a result, the apparent dielectric constants, as determined by the conventional procedure of using the fluctuations of the sum of dipoles in a finite fixed volume, are also too small. This suggests that a dielectric constant extracted from computer simulations using a total dipole-total dipole correlation function in a given volume with other geometries and/or boundary conditions will result in similar errors.
克耳文因子(Kirkwood g-factor)决定了各向同性、平移不变的偶极流体的长波长介电常数,其表达式为偶极-偶极相关函数在非零半径 R(K) 的球形区域上的积分,其中半径 R(K) 被选择为使得半径的进一步增加不会导致积分值发生变化,从而定义了克耳文相关长度 R(K)。对于小于相关长度的半径,积分定义了一个依赖于半径的(非局部)克耳文 g 因子,意味着非局部介电函数。这些量的非局部性质对于通过克耳文-弗罗霍利连接从偶极子波动确定长波长介电函数具有重要意义。在这种确定中常用的偶极-偶极相关函数(体积偶极自相关函数)仅涉及位于半径为 R 的球内的粒子,而不是正确的相关函数,后者涉及具有半径为 R(K)的球形体积内的单个粒子或具有半径为 R 的球形体积内的粒子以及位于半径为 R+R(K)的球形体积内的粒子。提出了一种从在有限球形样本上进行的模拟结果中提取无限系统偶极-偶极相关函数的方法。使用最近文献中报告的一些结果,与准确的相关函数相比,常用的相关函数在半径为克耳文相关长度的 7 倍时小 4%,在半径为克耳文相关长度的 27%时小 27%。因此,通过在有限固定体积中使用偶极子和/或边界条件的总和的波动来确定的表观介电常数也太小。这表明,使用给定体积中的总偶极-总偶极相关函数从计算机模拟中提取介电常数将导致类似的误差。