Suppr超能文献

基于因果高斯马尔可夫随机场先验的后验均值超分辨率。

Posterior-mean super-resolution with a causal Gaussian Markov random field prior.

机构信息

Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo 1698555, Japan.

出版信息

IEEE Trans Image Process. 2012 Jul;21(7):3182-93. doi: 10.1109/TIP.2012.2189578. Epub 2012 Feb 29.

Abstract

We propose a Bayesian image super-resolution (SR) method with a causal Gaussian Markov random field (MRF) prior. SR is a technique to estimate a spatially high-resolution image from given multiple low-resolution images. An MRF model with the line process supplies a preferable prior for natural images with edges. We improve the existing image transformation model, the compound MRF model, and its hyperparameter prior model. We also derive the optimal estimator--not the joint maximum a posteriori (MAP) or the marginalized maximum likelihood (ML) but the posterior mean (PM)--from the objective function of the L2-norm-based (mean square error) peak signal-to-noise ratio. Point estimates such as MAP and ML are generally not stable in ill-posed high-dimensional problems because of overfitting, whereas PM is a stable estimator because all the parameters in the model are evaluated as distributions. The estimator is numerically determined by using the variational Bayesian method. The variational Bayesian method is a widely used method that approximately determines a complicated posterior distribution, but it is generally hard to use because it needs the conjugate prior. We solve this problem with simple Taylor approximations. Experimental results have shown that the proposed method is more accurate or comparable to existing methods.

摘要

我们提出了一种基于贝叶斯的图像超分辨率(SR)方法,该方法具有因果高斯马尔可夫随机场(MRF)先验。SR 是一种从给定的多个低分辨率图像中估计空间高分辨率图像的技术。具有线过程的 MRF 模型为具有边缘的自然图像提供了更好的先验。我们改进了现有的图像变换模型,即复合 MRF 模型及其超参数先验模型。我们还从基于 L2 范数(均方误差)峰值信噪比的目标函数中推导出最优估计量——不是联合后验最大似然(MAP)或边缘最大似然(ML),而是后验均值(PM)。由于过拟合,MAP 和 ML 等点估计在病态高维问题中通常不稳定,而 PM 是一种稳定的估计量,因为模型中的所有参数都被评估为分布。该估计器通过使用变分贝叶斯方法来确定。变分贝叶斯方法是一种广泛使用的方法,可以近似确定复杂的后验分布,但由于需要共轭先验,因此通常难以使用。我们使用简单的泰勒近似来解决这个问题。实验结果表明,所提出的方法比现有方法更准确或相当。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验