Center for Population Biology, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA.
BMC Biol. 2012 Mar 5;10:17. doi: 10.1186/1741-7007-10-17.
Cnidocytes, the eponymous cell type of the Cnidaria, facilitate both sensory and secretory functions and are among the most complex animal cell types known. In addition to their structural complexity, cnidocytes display complex sensory attributes, integrating both chemical and mechanical cues from the environment into their discharge behavior. Despite more than a century of work aimed at understanding the sensory biology of cnidocytes, the specific sensory receptor genes that regulate their function remain unknown.
Here we report that light also regulates cnidocyte function. We show that non-cnidocyte neurons located in battery complexes of the freshwater polyp Hydra magnipapillata specifically express opsin, cyclic nucleotide gated (CNG) ion channel and arrestin, which are all known components of bilaterian phototransduction cascades. We infer from behavioral trials that different light intensities elicit significant effects on cnidocyte discharge propensity. Harpoon-like stenotele cnidocytes show a pronounced diminution of discharge behavior under bright light conditions as compared to dim light. Further, we show that suppression of firing by bright light is ablated by cis-diltiazem, a specific inhibitor of CNG ion channels.
Our results implicate an ancient opsin-mediated phototransduction pathway and a previously unknown layer of sensory complexity in the control of cnidocyte discharge. These findings also suggest a molecular mechanism for the regulation of other cnidarian behaviors that involve both photosensitivity and cnidocyte function, including diurnal feeding repertoires and/or substrate-based locomotion. More broadly, our findings highlight one novel, non-visual function for opsin-mediated phototransduction in a cnidarian, the origins of which might have preceded the evolution of cnidarian eyes.
刺胞动物的标志性细胞类型是刺细胞,它们既能进行感觉功能,又能进行分泌功能,是已知的最复杂的动物细胞类型之一。除了结构复杂之外,刺细胞还表现出复杂的感觉属性,将环境中的化学和机械线索整合到它们的放电行为中。尽管一个多世纪以来,人们一直致力于研究刺细胞的感觉生物学,但调节其功能的特定感觉受体基因仍然未知。
这里我们报告光也调节刺细胞的功能。我们表明,位于淡水水螅 Hydra magnipapillata 电池复合体中的非刺细胞神经元特异性表达视蛋白、环核苷酸门控(CNG)离子通道和 arrestin,它们都是两侧动物光转导级联的已知组成部分。我们从行为试验中推断,不同的光强度对刺细胞放电倾向有显著影响。与弱光相比,镖枪状的狭口刺细胞在强光条件下放电行为明显减少。此外,我们表明,明亮光线对放电的抑制作用被 cis-diltiazem 消除,cis-diltiazem 是 CNG 离子通道的特异性抑制剂。
我们的结果表明,在刺细胞放电的控制中存在一个古老的视蛋白介导的光转导途径和一个以前未知的感觉复杂性层次。这些发现还为调节其他涉及光敏性和刺细胞功能的刺胞动物行为提供了分子机制,包括昼夜摄食模式和/或基于基质的运动。更广泛地说,我们的发现强调了视蛋白介导的光转导在刺胞动物中的一个新的、非视觉功能,其起源可能早于刺胞动物眼睛的进化。