Suppr超能文献

利用纤维二糖作为底物预测β-葡萄糖苷酶的 Km 值。

Predicting Km values of beta-glucosidases using cellobiose as substrate.

机构信息

State Key Laboratory of Non-food Biomass Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Key Laboratory of Biorefinery, Guangxi Academy of Sciences, Nanning, 530007, Guangxi, China.

出版信息

Interdiscip Sci. 2012 Mar;4(1):46-53. doi: 10.1007/s12539-012-0115-z. Epub 2012 Mar 6.

Abstract

The Michaelis-Menten constant Km is a very important parameter to relate enzyme with its substrate in enzymatic reaction. Although Km can be experimentally determined, the Km values are not easily available in literature. With rapid increase of newly designed enzymes, we face the shortage of parameters related to enzymatic reactions. The beta-glucosidase is a crucial enzyme for cellulose hydrolysis and cellobiose is one of its substrates. In this study, we attempt to develop models to predict Km with cellobiose as substrates using information about primary structure of beta-glucosidase. The results show that the 20-1 feedforward backpropagation neural network using the amino-acid distribution probability as predictor works best for prediction of Km values.

摘要

米氏常数 Km 是将酶与其底物在酶反应中联系起来的一个非常重要的参数。尽管 Km 可以通过实验来确定,但在文献中并不容易获得 Km 值。随着新设计的酶的快速增加,我们面临着与酶反应相关的参数短缺的问题。β-葡萄糖苷酶是纤维素水解的关键酶,纤维二糖是其底物之一。在这项研究中,我们试图利用β-葡萄糖苷酶的一级结构信息,建立以纤维二糖为底物预测 Km 的模型。结果表明,采用氨基酸分布概率作为预测因子的 20-1 前馈反向传播神经网络对 Km 值的预测效果最好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验