Suppr超能文献

生物网络基元检测:原理与实践。

Biological network motif detection: principles and practice.

机构信息

Bowdoin College, Brunswick, Maine, USA.

出版信息

Brief Bioinform. 2012 Mar;13(2):202-15. doi: 10.1093/bib/bbr033. Epub 2011 Jun 20.

Abstract

Network motifs are statistically overrepresented sub-structures (sub-graphs) in a network, and have been recognized as 'the simple building blocks of complex networks'. Study of biological network motifs may reveal answers to many important biological questions. The main difficulty in detecting larger network motifs in biological networks lies in the facts that the number of possible sub-graphs increases exponentially with the network or motif size (node counts, in general), and that no known polynomial-time algorithm exists in deciding if two graphs are topologically equivalent. This article discusses the biological significance of network motifs, the motivation behind solving the motif-finding problem, and strategies to solve the various aspects of this problem. A simple classification scheme is designed to analyze the strengths and weaknesses of several existing algorithms. Experimental results derived from a few comparative studies in the literature are discussed, with conclusions that lead to future research directions.

摘要

网络基元是网络中统计上过度表示的子结构(子图),并已被认为是“复杂网络的简单构建块”。研究生物网络基元可以揭示许多重要生物学问题的答案。在生物网络中检测更大的网络基元的主要困难在于以下事实:可能的子图数量随着网络或基元大小(通常为节点计数)呈指数级增长,并且不存在用于确定两个图在拓扑上是否等效的已知多项式时间算法。本文讨论了网络基元的生物学意义、解决基元发现问题的动机,以及解决该问题各个方面的策略。设计了一个简单的分类方案来分析几种现有算法的优缺点。讨论了从文献中的一些比较研究中得出的实验结果,得出了一些导致未来研究方向的结论。

相似文献

1
Biological network motif detection: principles and practice.
Brief Bioinform. 2012 Mar;13(2):202-15. doi: 10.1093/bib/bbr033. Epub 2011 Jun 20.
2
CytoKavosh: a cytoscape plug-in for finding network motifs in large biological networks.
PLoS One. 2012;7(8):e43287. doi: 10.1371/journal.pone.0043287. Epub 2012 Aug 29.
3
FSM: Fast and scalable network motif discovery for exploring higher-order network organizations.
Methods. 2020 Feb 15;173:83-93. doi: 10.1016/j.ymeth.2019.07.008. Epub 2019 Jul 12.
4
Review of tools and algorithms for network motif discovery in biological networks.
IET Syst Biol. 2020 Aug;14(4):171-189. doi: 10.1049/iet-syb.2020.0004.
5
CeFunMO: A centrality based method for discovering functional motifs with application in biological networks.
Comput Biol Med. 2016 Sep 1;76:154-9. doi: 10.1016/j.compbiomed.2016.07.009. Epub 2016 Jul 18.
6
Identification of large disjoint motifs in biological networks.
BMC Bioinformatics. 2016 Oct 6;17(1):408. doi: 10.1186/s12859-016-1271-7.
7
Current innovations and future challenges of network motif detection.
Brief Bioinform. 2015 May;16(3):497-525. doi: 10.1093/bib/bbu021. Epub 2014 Jun 24.
8
Bridge and brick network motifs: identifying significant building blocks from complex biological systems.
Artif Intell Med. 2007 Oct;41(2):117-27. doi: 10.1016/j.artmed.2007.07.006. Epub 2007 Sep 7.
9
A correlated motif approach for finding short linear motifs from protein interaction networks.
BMC Bioinformatics. 2006 Nov 16;7:502. doi: 10.1186/1471-2105-7-502.
10
Kavosh: a new algorithm for finding network motifs.
BMC Bioinformatics. 2009 Oct 4;10:318. doi: 10.1186/1471-2105-10-318.

引用本文的文献

1
Reverse control of biological networks to restore phenotype landscapes.
Sci Adv. 2025 Aug 22;11(34):eadw3995. doi: 10.1126/sciadv.adw3995.
4
Transcriptomic signatures of prostate cancer progression: a comprehensive RNA-seq study.
3 Biotech. 2025 May;15(5):135. doi: 10.1007/s13205-025-04297-3. Epub 2025 Apr 19.
6
Plant Biosystems Design Research Roadmap 1.0.
Biodes Res. 2020 Dec 5;2020:8051764. doi: 10.34133/2020/8051764. eCollection 2020.
7
Community detection in empirical kinase networks identifies new potential members of signalling pathways.
PLoS Comput Biol. 2023 Jun 23;19(6):e1010459. doi: 10.1371/journal.pcbi.1010459. eCollection 2023 Jun.
8
Visinity: Visual Spatial Neighborhood Analysis for Multiplexed Tissue Imaging Data.
IEEE Trans Vis Comput Graph. 2023 Jan;29(1):106-116. doi: 10.1109/TVCG.2022.3209378. Epub 2022 Dec 16.
9
Emergence of dynamic properties in network hypermotifs.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2204967119. doi: 10.1073/pnas.2204967119. Epub 2022 Aug 1.
10
Improve the product structural robustness based on network motifs in product development.
Sci Rep. 2022 Jun 28;12(1):10916. doi: 10.1038/s41598-022-15056-2.

本文引用的文献

1
SnapShot: network motifs.
Cell. 2010 Oct 15;143(2):326-e1. doi: 10.1016/j.cell.2010.09.050.
2
MODA: an efficient algorithm for network motif discovery in biological networks.
Genes Genet Syst. 2009 Oct;84(5):385-95. doi: 10.1266/ggs.84.385.
3
Kavosh: a new algorithm for finding network motifs.
BMC Bioinformatics. 2009 Oct 4;10:318. doi: 10.1186/1471-2105-10-318.
4
Control of transcriptional variability by overlapping feed-forward regulatory motifs.
Biophys J. 2008 Oct;95(8):3715-23. doi: 10.1529/biophysj.108.134064. Epub 2008 Jul 11.
5
A review on models and algorithms for motif discovery in protein-protein interaction networks.
Brief Funct Genomic Proteomic. 2008 Mar;7(2):147-56. doi: 10.1093/bfgp/eln015. Epub 2008 Apr 28.
6
Coupled feedback loops form dynamic motifs of cellular networks.
Biophys J. 2008 Jan 15;94(2):359-65. doi: 10.1529/biophysj.107.105106. Epub 2007 Oct 19.
7
Network motifs: theory and experimental approaches.
Nat Rev Genet. 2007 Jun;8(6):450-61. doi: 10.1038/nrg2102.
8
Are network motifs the spandrels of cellular complexity?
Trends Ecol Evol. 2006 Aug;21(8):419-22. doi: 10.1016/j.tree.2006.05.013. Epub 2006 Jun 9.
9
A coherent feed-forward loop with a SUM input function prolongs flagella expression in Escherichia coli.
Mol Syst Biol. 2005;1:2005.0006. doi: 10.1038/msb4100010. Epub 2005 Mar 29.
10
FANMOD: a tool for fast network motif detection.
Bioinformatics. 2006 May 1;22(9):1152-3. doi: 10.1093/bioinformatics/btl038. Epub 2006 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验