Suppr超能文献

通过定向随机游走解决准确性-多样性困境。

Solving the accuracy-diversity dilemma via directed random walks.

作者信息

Liu Jian-Guo, Shi Kerui, Guo Qiang

机构信息

Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jan;85(1 Pt 2):016118. doi: 10.1103/PhysRevE.85.016118. Epub 2012 Jan 30.

Abstract

Random walks have been successfully used to measure user or object similarities in collaborative filtering (CF) recommender systems, which is of high accuracy but low diversity. A key challenge of a CF system is that the reliably accurate results are obtained with the help of peers' recommendation, but the most useful individual recommendations are hard to be found among diverse niche objects. In this paper we investigate the direction effect of the random walk on user similarity measurements and find that the user similarity, calculated by directed random walks, is reverse to the initial node's degree. Since the ratio of small-degree users to large-degree users is very large in real data sets, the large-degree users' selections are recommended extensively by traditional CF algorithms. By tuning the user similarity direction from neighbors to the target user, we introduce a new algorithm specifically to address the challenge of diversity of CF and show how it can be used to solve the accuracy-diversity dilemma. Without relying on any context-specific information, we are able to obtain accurate and diverse recommendations, which outperforms the state-of-the-art CF methods. This work suggests that the random-walk direction is an important factor to improve the personalized recommendation performance.

摘要

随机游走已成功应用于协同过滤(CF)推荐系统中,用于衡量用户或对象之间的相似度,该方法精度高但多样性低。CF系统面临的一个关键挑战是,虽然在同行推荐的帮助下能获得可靠准确的结果,但在多样的小众对象中很难找到最有用的个性化推荐。在本文中,我们研究了随机游走对用户相似度测量的方向效应,发现通过有向随机游走计算出的用户相似度与初始节点的度相反。由于在实际数据集中,小度用户与大度用户的比例非常大,传统CF算法会广泛推荐大度用户的选择。通过调整从邻居到目标用户的相似度方向,我们引入了一种新算法,专门解决CF多样性的挑战,并展示了如何用它来解决准确性与多样性的两难问题。无需依赖任何特定上下文信息,我们就能获得准确且多样的推荐,其性能优于当前最先进的CF方法。这项工作表明,随机游走方向是提高个性化推荐性能的一个重要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验