Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
Ultrasound Med Biol. 2012 May;38(5):753-66. doi: 10.1016/j.ultrasmedbio.2012.01.013. Epub 2012 Mar 6.
Cavitation memory effects occur when remnants of cavitation bubbles (nuclei) persist in the host medium and act as seeds for subsequent events. In pulsed cavitational ultrasound therapy, or histotripsy, this effect may cause cavitation to repeatedly occur at these seeded locations within a target volume, producing inhomogeneous tissue fractionation or requiring an excess number of pulses to completely homogenize the target volume. We hypothesized that by removing the cavitation memory, i.e., the persistent nuclei, the cavitation bubbles could be induced at random locations in response to each pulse; therefore, complete disruption of a tissue volume may be achieved with fewer pulses. To test the hypothesis, the cavitation memory was passively removed by increasing the intervals between successive pulses, ∆t, from 2, 10, 20, 50 and 100, to 200 ms. Histotripsy treatments were performed in red blood cell tissue phantoms and ex vivo livers using 1-MHz ultrasound pulses of 10 cycles at P-/P+ pressure of 21/59 MPa. The phantom study allowed for direct visualization of the cavitation patterns and the lesion development process in real time using high-speed photography; the ex vivo tissue study provided validation of the memory effect in real tissues. Results of the phantom study showed an exponential decrease in the correlation coefficient between cavitation patterns in successive pulses from 0.5 ± 0.1 to 0.1 ± 0.1 as ∆t increased from 2-200 ms; correspondingly, the lesion was completely fractionated with significantly fewer pulses for longer ∆ts. In the tissue study, given the same number of therapy pulses, complete and homogeneous tissue fractionation with well-defined lesion boundaries was achieved only for ∆t ≥ 100 ms. These results indicated that the removal of the cavitation memory resulted in more efficient treatments and homogeneous lesions.
空化记忆效应是指空化泡(核)的残余物残留在宿主介质中,并作为随后事件的种子而发生的现象。在脉冲空化超声治疗或组织微爆破中,这种效应可能导致空化在目标体积内的这些种子位置反复发生,导致组织不均匀分割,或者需要超过一定数量的脉冲才能完全均匀化目标体积。我们假设通过去除空化记忆,即持久的核,空化泡可以在每个脉冲的随机位置被诱导;因此,通过更少的脉冲可以实现组织体积的完全破坏。为了验证这一假设,通过增加相继脉冲之间的间隔 ∆t,从 2、10、20、50 和 100 毫秒增加到 200 毫秒,被动去除空化记忆。在红细胞组织模型和离体肝脏中,使用 1-MHz 超声脉冲,脉压为 21/59 MPa,进行 10 个周期的组织微爆破处理。在离体组织研究中,通过高速摄影实时直接观察空化模式和损伤发展过程,为真实组织中的记忆效应提供了验证。在离体组织研究中,通过高速摄影实时直接观察空化模式和损伤发展过程,为真实组织中的记忆效应提供了验证。组织模型研究结果表明,随着 ∆t 从 2-200 毫秒增加,相继脉冲之间的空化模式相关系数从 0.5 ± 0.1 呈指数下降至 0.1 ± 0.1;相应地,对于较长的 ∆t,损伤完全分割所需的脉冲数显著减少。在组织研究中,在相同数量的治疗脉冲下,只有当 ∆t ≥ 100 毫秒时,才能实现完全均匀的组织分割和具有明确边界的损伤。这些结果表明,去除空化记忆可以提高治疗效率并产生均匀的损伤。