Zhao Yi, Wilson Dalziel J, Ni K-K, Kimble H J
Norman Bridge Laboratory of Physics, 12-33, California Institute of Technology, Pasadena, California 91125, USA.
Opt Express. 2012 Feb 13;20(4):3586-612. doi: 10.1364/OE.20.003586.
Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator's motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint "anti-noise" onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-Pérot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.
在腔光机械系统中,外部热运动可能会限制位移灵敏度和辐射压力效应,例如光学冷却。在此,我们提出一种有源噪声抑制方案及其实验实现。主要挑战在于在不影响振荡器运动的情况下,选择性地感知并抑制外部热噪声。我们的解决方案是监测光学腔的两种模式,每种模式对振荡器运动的灵敏度不同,但对外部热运动的灵敏度相似。这些信息用于在入射激光场的频率上注入“抗噪声”。在我们基于与法布里 - 珀罗腔耦合的纳米机械膜的系统中,模拟和实验表明,外部热噪声可以被选择性地抑制,并且光学冷却的相关限制可以降低。