Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, P.O. Box 85500, 3508GA Utrecht, the Netherlands.
Am J Epidemiol. 2012 Apr 15;175(8):847-53. doi: 10.1093/aje/kwr383. Epub 2012 Mar 15.
A key requirement in the design of diagnostic accuracy studies is that all study participants receive both the test under evaluation and the reference standard test. For a variety of practical and ethical reasons, sometimes only a proportion of patients receive the reference standard, which can bias the accuracy estimates. Numerous methods have been described for correcting this partial verification bias or workup bias in individual studies. In this article, the authors describe a Bayesian method for obtaining adjusted results from a diagnostic meta-analysis when partial verification or workup bias is present in a subset of the primary studies. The method corrects for verification bias without having to exclude primary studies with verification bias, thus preserving the main advantages of a meta-analysis: increased precision and better generalizability. The results of this method are compared with the existing methods for dealing with verification bias in diagnostic meta-analyses. For illustration, the authors use empirical data from a systematic review of studies of the accuracy of the immunohistochemistry test for diagnosis of human epidermal growth factor receptor 2 status in breast cancer patients.
在诊断准确性研究的设计中,一个关键要求是所有研究参与者都接受评估中的测试和参考标准测试。出于各种实际和道德原因,有时只有一部分患者接受参考标准测试,这可能会导致准确性估计产生偏差。已经描述了许多方法来纠正个别研究中这种部分验证偏差或工作流程偏差。在本文中,作者描述了一种贝叶斯方法,用于在主要研究中的一部分存在部分验证或工作流程偏差的情况下,从诊断性荟萃分析中获得调整结果。该方法纠正了验证偏差,而无需排除具有验证偏差的主要研究,从而保留了荟萃分析的主要优势:提高精度和更好的通用性。将该方法的结果与处理诊断荟萃分析中验证偏差的现有方法进行了比较。为了说明问题,作者使用了来自系统评价的经验数据,该评价研究了免疫组织化学检测在乳腺癌患者人类表皮生长因子受体 2 状态诊断中的准确性。