Department of Physics, University of Memphis, Memphis, Tennessee, United States of America.
PLoS One. 2012;7(3):e33242. doi: 10.1371/journal.pone.0033242. Epub 2012 Mar 20.
Polymer crosslinked aerogels are an attractive class of materials for future implant applications particularly as a biomaterial for the support of nerve growth. The low density and nano-porous structure of this material combined with large surface area, high mechanical strength, and tunable surface properties, make aerogels materials with a high potential in aiding repair of injuries of the peripheral nervous system. however, the interaction of neurons with aerogels remains to be investigated.
In this work the attachment and growth of neurons on clear polyurea crosslinked silica aerogels (PCSA) coated with: poly-L-lysine, basement membrane extract (BME), and laminin1 was investigated by means of optical and scanning electron microscopy. After comparing the attachment and growth capability of neurons on these different coatings, laminin1 and BME were chosen for nerve cell attachment and growth on PCSA surfaces. The behavior of neurons on treated petri dish surfaces was used as the control and behavior of neurons on treated PCSA discs was compared against it.
CONCLUSIONS/SIGNIFICANCE: This study demonstrates that: 1) untreated PCSA surfaces do not support attachment and growth of nerve cells, 2) a thin application of laminin1 layer onto the PCSA discs adhered well to the PCSA surface while also supporting growth and differentiation of neurons as evidenced by the number of processes extended and b3-tubulin expression, 3) three dimensional porous structure of PCSA remains intact after fixing protocols necessary for preservation of biological samples and 4) laminin1 coating proved to be the most effective method for attaching neurons to the desired regions on PCSA discs. This work provides the basis for potential use of PCSA as a biomaterial scaffold for neural regeneration.
聚合物交联气凝胶是一种很有前途的材料,尤其适合作为支持神经生长的生物材料,用于未来的植入物应用。这种材料的低密度和纳米多孔结构,结合大的表面积、高机械强度和可调节的表面性能,使气凝胶材料在辅助修复周围神经系统损伤方面具有很高的潜力。然而,神经元与气凝胶的相互作用仍有待研究。
在这项工作中,通过光学和扫描电子显微镜研究了神经元在涂有聚-L-赖氨酸、基底膜提取物(BME)和层粘连蛋白 1 的透明聚脲交联二氧化硅气凝胶(PCSA)上的附着和生长。在比较了神经元在这些不同涂层上的附着和生长能力后,选择层粘连蛋白 1 和 BME 用于 PCSA 表面上的神经细胞附着和生长。将处理过的培养皿表面上神经元的行为用作对照,并将其与处理过的 PCSA 盘上神经元的行为进行比较。
结论/意义:本研究表明:1)未经处理的 PCSA 表面不支持神经细胞的附着和生长,2)将薄的层粘连蛋白 1 层涂覆在 PCSA 盘上,可很好地附着在 PCSA 表面上,同时也支持神经元的生长和分化,这可以从延伸的突起数量和β-微管蛋白表达得到证明,3)在为保存生物样品而必需的固定方案后,PCSA 的三维多孔结构仍然保持完整,4)层粘连蛋白 1 涂层被证明是将神经元附着到 PCSA 盘上所需区域的最有效方法。这项工作为 PCSA 作为神经再生的生物材料支架的潜在用途提供了基础。