Nazarathy Moshe, Shaham Oded
Electrical Engineering Department, Technion, Israel Institute of Technology, Haifa 32000, Israel.
Opt Express. 2012 Mar 26;20(7):7833-69. doi: 10.1364/OE.20.007833.
We explore photonic ADC architectures based on encoding voltage-under-test into phase. The first step is to identify two basic optical building blocks: the optical phase comparator (1-bit ADC), based on interferometric comparison of phases in the well-known balanced photo-detection configuration, and the optical 1-bit DAC, namely electro-optic modulation with a bipolar electrical pulse. Equipped with these fundamental building blocks, we proceed to systematically port and adapt known ADC quantization architectures to photonic ADC, conceiving a hybrid between the Successive Approximation Register (SAR) and the Pipeline classic ADC architectures, referred to here as Spatially Distributed SAR (SDSAR). This novel photonic ADC, constructed out of B 1-bit ADCs and B-2 1-bit DACs, with B the number of bits, is not equivalent to any of the previous photonic ADCs in the literature, but appears superior to prior schemes in both optical power efficiency and electro-optic modulation complexity. We derive upper bounds on resolution, Effective Number of Bits (ENOB) performance as a function of average optical power for the new SDSAR device, developing analytic and numeric Monte-Carlo statistical models, comprising quantization, shot, thermal and DAC voltage noise sources. Our findings indicate that SDSAR is limited to ~11.5 ENOBs, assuming state-of-the-art mode-locked-lasers providing ~250 mW of average power (assuming ~7 dB excess losses). However, this upper bound is not tight, due to various physical impairments. In particular, the mode locked laser jitter is shown to have negligible impact on overall performance for RMS jitter < 20 fsec.
我们探索基于将被测电压编码为相位的光子模数转换器(ADC)架构。第一步是确定两个基本的光学构建模块:基于在众所周知的平衡光探测配置中对相位进行干涉测量比较的光学相位比较器(1位ADC),以及光学1位数模转换器(DAC),即利用双极电脉冲进行电光调制。配备了这些基本构建模块后,我们着手系统地将已知的ADC量化架构移植并适配到光子ADC,构思出一种逐次逼近寄存器(SAR)和流水线经典ADC架构之间的混合架构,在此称为空间分布式SAR(SDSAR)。这种新型光子ADC由B个1位ADC和B - 2个1位DAC构建而成,其中B为位数,它与文献中之前的任何光子ADC都不等同,但在光功率效率和电光调制复杂度方面似乎都优于先前的方案。我们推导了新的SDSAR器件分辨率、有效位数(ENOB)性能随平均光功率变化的上限,开发了分析和数值蒙特卡罗统计模型,其中包括量化、散粒、热噪声和DAC电压噪声源。我们的研究结果表明,假设采用提供约250 mW平均功率的最先进锁模激光器(假设存在约7 dB的额外损耗),SDSAR的ENOB限制在约11.5。然而,由于各种物理损伤,这个上限并不严格。特别是,对于均方根抖动<20飞秒的情况,锁模激光抖动对整体性能的影响可忽略不计。