Suppr超能文献

面对多重共线性时支持解释多元回归的工具。

Tools to support interpreting multiple regression in the face of multicollinearity.

作者信息

Kraha Amanda, Turner Heather, Nimon Kim, Zientek Linda Reichwein, Henson Robin K

机构信息

Department of Psychology, University of North Texas Denton, TX, USA.

出版信息

Front Psychol. 2012 Mar 14;3:44. doi: 10.3389/fpsyg.2012.00044. eCollection 2012.

Abstract

While multicollinearity may increase the difficulty of interpreting multiple regression (MR) results, it should not cause undue problems for the knowledgeable researcher. In the current paper, we argue that rather than using one technique to investigate regression results, researchers should consider multiple indices to understand the contributions that predictors make not only to a regression model, but to each other as well. Some of the techniques to interpret MR effects include, but are not limited to, correlation coefficients, beta weights, structure coefficients, all possible subsets regression, commonality coefficients, dominance weights, and relative importance weights. This article will review a set of techniques to interpret MR effects, identify the elements of the data on which the methods focus, and identify statistical software to support such analyses.

摘要

虽然多重共线性可能会增加解释多元回归(MR)结果的难度,但对于知识渊博的研究者来说,它不应造成过多问题。在本文中,我们认为研究者不应仅使用一种技术来研究回归结果,而应考虑多个指标,以了解预测变量不仅对回归模型,而且对彼此所做的贡献。一些解释MR效应的技术包括但不限于相关系数、β权重、结构系数、所有可能子集回归、共性系数、优势权重和相对重要性权重。本文将回顾一组解释MR效应的技术,确定这些方法所关注的数据元素,并确定支持此类分析的统计软件。

相似文献

1
Tools to support interpreting multiple regression in the face of multicollinearity.
Front Psychol. 2012 Mar 14;3:44. doi: 10.3389/fpsyg.2012.00044. eCollection 2012.
3
Revisiting Interpretation of Canonical Correlation Analysis: A Tutorial and Demonstration of Canonical Commonality Analysis.
Multivariate Behav Res. 2010 Aug 6;45(4):702-24. doi: 10.1080/00273171.2010.498293.
4
Multicollinearity and misleading statistical results.
Korean J Anesthesiol. 2019 Dec;72(6):558-569. doi: 10.4097/kja.19087. Epub 2019 Jul 15.
5
Investigating bias in squared regression structure coefficients.
Front Psychol. 2015 Jul 8;6:949. doi: 10.3389/fpsyg.2015.00949. eCollection 2015.
6
Regularized regression can improve estimates of multivariate selection in the face of multicollinearity and limited data.
Evol Lett. 2024 Jan 23;8(3):361-373. doi: 10.1093/evlett/qrad064. eCollection 2024 Jun.
7
Multicollinearity in spatial genetics: separating the wheat from the chaff using commonality analyses.
Mol Ecol. 2015 Jan;24(2):263-83. doi: 10.1111/mec.13029. Epub 2015 Jan 9.
8
Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies.
Epidemiology (Sunnyvale). 2016 Apr;6(2). doi: 10.4172/2161-1165.1000227. Epub 2016 Mar 7.
9
Model averaging and muddled multimodel inferences.
Ecology. 2015 Sep;96(9):2370-82. doi: 10.1890/14-1639.1.

引用本文的文献

1
Distributed Cortical Network Dynamics of Binocular Convergent Eye Movements in Humans.
bioRxiv. 2025 Aug 21:2025.08.15.670412. doi: 10.1101/2025.08.15.670412.
2
Neural correlates of human fear conditioning and sources of variability in 2199 individuals.
Nat Commun. 2025 Aug 23;16(1):7869. doi: 10.1038/s41467-025-63078-x.
3
Cognitive appraisals, cognitive avoidance and rumination as shared vulnerabilities for PTSD and depression in trauma-exposed adolescents.
Eur J Psychotraumatol. 2025 Dec;16(1):2527550. doi: 10.1080/20008066.2025.2527550. Epub 2025 Jul 30.
4
Benchmarking methods for mapping functional connectivity in the brain.
Nat Methods. 2025 Jun 6. doi: 10.1038/s41592-025-02704-4.
5
Psychological factors associated with pain and function in adults with hallux valgus.
J Foot Ankle Res. 2025 Mar;18(1):e70030. doi: 10.1002/jfa2.70030.
6
Impact of age-related changes in buccal epithelial cells on pediatric epigenetic biomarker research.
Nat Commun. 2025 Jan 12;16(1):609. doi: 10.1038/s41467-025-55909-8.
8
Distributed network flows generate localized category selectivity in human visual cortex.
PLoS Comput Biol. 2024 Oct 22;20(10):e1012507. doi: 10.1371/journal.pcbi.1012507. eCollection 2024 Oct.
10
Social Anhedonia Accounts for Greater Variance in Internalizing Symptoms than Autism Symptoms in Autistic and Non-Autistic Youth.
J Autism Dev Disord. 2025 Mar;55(3):927-939. doi: 10.1007/s10803-024-06266-w. Epub 2024 Feb 10.

本文引用的文献

1
A Heuristic Method for Estimating the Relative Weight of Predictor Variables in Multiple Regression.
Multivariate Behav Res. 2000 Jan 1;35(1):1-19. doi: 10.1207/S15327906MBR3501_1.
2
Revisiting Interpretation of Canonical Correlation Analysis: A Tutorial and Demonstration of Canonical Commonality Analysis.
Multivariate Behav Res. 2010 Aug 6;45(4):702-24. doi: 10.1080/00273171.2010.498293.
3
Exploratory regression analysis: a tool for selecting models and determining predictor importance.
Behav Res Methods. 2011 Jun;43(2):331-9. doi: 10.3758/s13428-010-0046-8.
5
Two SPSS programs for interpreting multiple regression results.
Behav Res Methods. 2010 Feb;42(1):29-35. doi: 10.3758/BRM.42.1.29.
6
Determining the statistical significance of relative weights.
Psychol Methods. 2009 Dec;14(4):387-99. doi: 10.1037/a0017735.
8
Playing statistical ouija board with commonality analysis: good questions, wrong assumptions.
Appl Neuropsychol. 2008;15(1):44-53. doi: 10.1080/09084280801917566.
9
Multivariate relative importance: extending relative weight analysis to multivariate criterion spaces.
J Appl Psychol. 2008 Mar;93(2):329-45. doi: 10.1037/0021-9010.93.2.329.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验