Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA 92093, USA.
Brain Res. 2012 May 3;1452:165-72. doi: 10.1016/j.brainres.2012.03.004. Epub 2012 Mar 9.
The currently accepted scheme for reactive oxygen species production during ischemia/reperfusion injury is characterized by a deleterious mitochondria-derived burst of radical generation during reperfusion; however, recent examination of the penumbra suggests a central role for NADPH-oxidase (Nox)-mediated radical generation during the ischemic period. Therefore, we utilized a novel in vitro model of the penumbra to examine the free radical profile of ischemic murine hippocampal neurons using electron paramagnetic resonance spectroscopy, and also the role of Nox in this generation and in cell fate. We report that free radical production increased ~75% at 2 h of ischemia, and this increase was abolished by: (1) scavenging of extracellular free radicals with superoxide dismutase (SOD), (2) a general anion channel antagonist, or (3) the Nox inhibitor apocynin. Similarly, at 24 h of ischemia, [ATP] decreased >95% and vital dye uptake increased 6-fold relative to controls; whereas apocynin, the Cl(-) channel antagonist 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB), or the free radical scavenger N-acetyl cysteine (NAC) each provided moderate neuroprotection, ameliorating 13-32% of [ATP]-depletion and 19-56% of vital dye uptake at 24 h. Our results support a cytotoxic role for Nox-mediated free radical production from penumbral neurons during the ischemic period.
目前公认的缺血/再灌注损伤过程中活性氧产生的方案,其特点是再灌注期间有害的线粒体衍生自由基爆发;然而,最近对缺血半影区的检查表明,NADPH 氧化酶 (Nox) 介导的自由基生成在缺血期间起核心作用。因此,我们利用缺血半影区的新型体外模型,使用电子顺磁共振波谱法检查缺血鼠海马神经元的自由基谱,并研究 Nox 在这种生成和细胞命运中的作用。我们报告说,在缺血 2 小时时自由基生成增加了约 75%,这种增加被以下方法消除:(1) 用超氧化物歧化酶 (SOD) 清除细胞外自由基,(2) 一般阴离子通道拮抗剂,或 (3) Nox 抑制剂 apocynin。同样,在缺血 24 小时时,[ATP] 减少了 >95%,与对照组相比,活染料摄取增加了 6 倍;然而,apocynin、Cl(-)通道拮抗剂 5-硝基-2-(3-苯丙基氨基)-苯甲酸酯 (NPPB) 或自由基清除剂 N-乙酰半胱氨酸 (NAC) 都提供了适度的神经保护作用,改善了 24 小时时 [ATP] 耗竭的 13-32%和活染料摄取的 19-56%。我们的结果支持在缺血期间,来自缺血半影区神经元的 Nox 介导的自由基生成具有细胞毒性作用。