The Institute of Optics, University of Rochester, Rochester, New York 14627, USA.
Opt Lett. 2012 Apr 1;37(7):1271-3. doi: 10.1364/OL.37.001271.
We present a time-transformation approach for studying the propagation of optical pulses inside a nonlinear medium. Unlike the conventional way of solving for the slowly varying amplitude of an optical pulse, our new approach maps directly the input electric field to the output one, without making the slowly varying envelope approximation. Conceptually, the time-transformation approach shows that the effect of propagation through a nonlinear medium is to change the relative spacing and duration of various temporal slices of the pulse. These temporal changes manifest as self-phase modulation in the spectral domain and self-steepening in the temporal domain. Our approach agrees with the generalized nonlinear Schrödinger equation for 100 fs pulses and the finite-difference time-domain solution of Maxwell's equations for two-cycle pulses, while producing results 20 and 50 times faster, respectively.
我们提出了一种用于研究非线性介质中光脉冲传播的时变变换方法。与传统的求解光脉冲缓慢变化幅度的方法不同,我们的新方法直接将输入电场映射到输出电场,而无需进行缓慢变化包络近似。从概念上讲,时变变换方法表明,通过非线性介质传播的效果是改变脉冲各个时间切片的相对间隔和持续时间。这些时间变化表现为光谱域中的自相位调制和时域中的自陡峭化。我们的方法与 100fs 脉冲的广义非线性薛定谔方程和两周期脉冲的麦克斯韦方程组的有限差分时间域解一致,而分别快 20 倍和 50 倍。