Institute for Ageing and Health, Human Nutrition Research Centre, Newcastle University, Newcastle upon Tyne, Tyne and Wear, United Kingdom.
PLoS One. 2012;7(3):e33290. doi: 10.1371/journal.pone.0033290. Epub 2012 Mar 30.
Inter-individual variation in patterns of DNA methylation at birth can be explained by the influence of environmental, genetic and stochastic factors. This study investigates the genetic and non-genetic determinants of variation in DNA methylation in human infants. Given its central role in provision of methyl groups for DNA methylation, this study focuses on aspects of folate metabolism. Global (LUMA) and gene specific (IGF2, ZNT5, IGFBP3) DNA methylation were quantified in 430 infants by Pyrosequencing®. Seven polymorphisms in 6 genes (MTHFR, MTRR, FOLH1, CβS, RFC1, SHMT) involved in folate absorption and metabolism were analysed in DNA from both infants and mothers. Red blood cell folate and serum vitamin B(12) concentrations were measured as indices of vitamin status. Relationships between DNA methylation patterns and several covariates viz. sex, gestation length, maternal and infant red cell folate, maternal and infant serum vitamin B(12), maternal age, smoking and genotype were tested. Length of gestation correlated positively with IGF2 methylation (rho = 0.11, p = 0.032) and inversely with ZNT5 methylation (rho = -0.13, p = 0.017). Methylation of the IGFBP3 locus correlated inversely with infant vitamin B(12) concentration (rho = -0.16, p = 0.007), whilst global DNA methylation correlated inversely with maternal vitamin B(12) concentrations (rho = 0.18, p = 0.044). Analysis of common genetic variants in folate pathway genes highlighted several associations including infant MTRR 66G>A genotype with DNA methylation (χ(2) = 8.82, p = 0.003) and maternal MTHFR 677C>T genotype with IGF2 methylation (χ(2) = 2.77, p = 0.006). These data support the hypothesis that both environmental and genetic factors involved in one-carbon metabolism influence DNA methylation in infants. Specifically, the findings highlight the importance of vitamin B(12) status, infant MTRR genotype and maternal MTHFR genotype, all of which may influence the supply of methyl groups for DNA methylation. In addition, gestational length appears to be an important determinant of infant DNA methylation patterns.
个体间出生时 DNA 甲基化模式的变化可以通过环境、遗传和随机因素的影响来解释。本研究调查了人类婴儿 DNA 甲基化变化的遗传和非遗传决定因素。鉴于其在为 DNA 甲基化提供甲基基团方面的核心作用,本研究侧重于叶酸代谢的各个方面。通过焦磷酸测序®,对 430 名婴儿的 LUMA(整体)和基因特异性(IGF2、ZNT5、IGFBP3)DNA 甲基化进行了定量分析。分析了婴儿和母亲 DNA 中 6 个基因(MTHFR、MTRR、FOLH1、CβS、RFC1、SHMT)中 7 个多态性与叶酸吸收和代谢有关的多态性。红细胞叶酸和血清维生素 B(12)浓度作为维生素状况的指标进行测量。测试了 DNA 甲基化模式与几个协变量(性别、胎龄、母婴红细胞叶酸、母婴血清维生素 B(12)、母亲年龄、吸烟和基因型)之间的关系。胎龄与 IGF2 甲基化呈正相关(rho = 0.11,p = 0.032),与 ZNT5 甲基化呈负相关(rho = -0.13,p = 0.017)。IGFBP3 基因座的甲基化与婴儿维生素 B(12)浓度呈负相关(rho = -0.16,p = 0.007),而全球 DNA 甲基化与母体维生素 B(12)浓度呈负相关(rho = 0.18,p = 0.044)。叶酸途径基因常见遗传变异的分析突出了一些关联,包括婴儿 MTRR 66G>A 基因型与 DNA 甲基化(χ(2) = 8.82,p = 0.003)和母体 MTHFR 677C>T 基因型与 IGF2 甲基化(χ(2) = 2.77,p = 0.006)。这些数据支持这样一种假设,即参与一碳代谢的环境和遗传因素都会影响婴儿的 DNA 甲基化。具体而言,研究结果强调了维生素 B(12)状况、婴儿 MTRR 基因型和母体 MTHFR 基因型的重要性,所有这些都可能影响 DNA 甲基化的甲基供体供应。此外,胎龄似乎是婴儿 DNA 甲基化模式的一个重要决定因素。