Research Center for Experimental Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
Tissue Eng Part A. 2012 Jun;18(11-12):1140-50. doi: 10.1089/ten.TEA.2011.0426. Epub 2012 May 14.
Structural extracellular matrix molecules gain increasing attention as scaffolds for cartilage tissue engineering owing to their natural role as a growth factor repository. We recently observed that a collagen-type I/III (Col-I/III) matrix, human recombinant transforming growth factor-beta (TGF-β) protein, and fibrin hydrogel (FG) combined to a biphasic construct provided sufficient long-term TGF-β support to drive in vitro chondrogenesis of human mesenchymal stem cells (hMSC). Here we ask whether FG and Col-I/III can both retain TGF-β, describe the influence of cell seeding on TGF-β release, and compare the molecular path of hMSC chondrogenic differentiation under soluble versus local TGF-β supply. Release of growth factor from scaffolds augmented with increasing amounts of TGF-β was analyzed over 7 days and chondrogenesis was assessed over 42 days. Low TGF-β release rates from Col-I/III as opposed to higher release from FG indicated that both molecules retained TGF-β, with Col-I/III being the superior storage component. Cell seeding enhanced TGF-β retention in FG by about threefold and almost stopped release beyond 24 h. TGF-β remained bioactive and supported MSC chondrogenesis without impairing the amount of proteoglycan and collagen-type II deposition per cell and per construct compared to standard scaffold-free MSC pellets supplied with soluble TGF-β. Local TGF-β, however, mediated lower cell content, less collagen-type X relative to collagen-type II deposition and no matrix metalloproteinase-13 up-regulation. In conclusion, cells quickly halted release of local TGF-β from FG, turning FG and Col-I/III into attractive TGF-β repositories capable to drive full hMSC chondrogenesis, but via a modulated differentiation pathway. Since only part of the changes was reproduced by transient soluble TGF-β supply, release kinetics alone could not explain the molecular differences, suggesting that local TGF-β acts distinct from its soluble counterpart.
结构细胞外基质分子因其作为生长因子库的天然作用而越来越受到关注,可作为软骨组织工程的支架。我们最近观察到,I/III 型胶原(Col-I/III)基质、人重组转化生长因子-β(TGF-β)蛋白和纤维蛋白凝胶(FG)结合成双相构建体,为体外人间充质干细胞(hMSC)软骨生成提供了足够的长期 TGF-β 支持。在这里,我们询问 FG 和 Col-I/III 是否都能保留 TGF-β,描述细胞接种对 TGF-β 释放的影响,并比较可溶性和局部 TGF-β供应下 hMSC 软骨分化的分子途径。用不同量的 TGF-β 增强的支架中生长因子的释放情况在 7 天内进行分析,软骨生成在 42 天内进行评估。Col-I/III 中 TGF-β 的释放率较低,而 FG 中的释放率较高,这表明两种分子都保留了 TGF-β,Col-I/III 是更好的储存成分。细胞接种使 FG 中的 TGF-β 保留增加了约三倍,并在 24 小时后几乎停止释放。与用可溶性 TGF-β 供应标准无支架 MSC 小球相比,TGF-β 仍然具有生物活性,并支持 MSC 软骨生成,而不会减少每个细胞和每个构建体的糖胺聚糖和 II 型胶原的沉积量。然而,局部 TGF-β 介导的细胞含量较低,与 II 型胶原相比,X 型胶原的沉积较少,基质金属蛋白酶-13 的上调也较少。总之,细胞迅速停止 FG 中局部 TGF-β 的释放,使 FG 和 Col-I/III 成为有吸引力的 TGF-β 储存库,能够驱动 hMSC 完全软骨生成,但通过调节分化途径。由于仅部分变化可通过短暂的可溶性 TGF-β 供应再现,因此释放动力学本身不能解释分子差异,这表明局部 TGF-β 的作用与可溶性 TGF-β 不同。