Postdoctoral Research Associate, Department of Biomedical Informatics, University of Utah, Salt Lake City, UT 84112, USA.
J Med Libr Assoc. 2012 Apr;100(2):113-20. doi: 10.3163/1536-5050.100.2.009.
This paper examines the use of Semantic MEDLINE, a natural language processing application enhanced with a statistical algorithm known as Combo, as a potential decision support tool for clinicians. Semantic MEDLINE summarizes text in PubMed citations, transforming it into compact declarations that are filtered according to a user's information need that can be displayed in a graphic interface. Integration of the Combo algorithm enables Semantic MEDLINE to deliver information salient to many diverse needs.
The authors selected three disease topics and crafted PubMed search queries to retrieve citations addressing the prevention of these diseases. They then processed the citations with Semantic MEDLINE, with the Combo algorithm enhancement. To evaluate the results, they constructed a reference standard for each disease topic consisting of preventive interventions recommended by a commercial decision support tool.
Semantic MEDLINE with Combo produced an average recall of 79% in primary and secondary analyses, an average precision of 45%, and a final average F-score of 0.57.
This new approach to point-of-care information delivery holds promise as a decision support tool for clinicians. Health sciences libraries could implement such technologies to deliver tailored information to their users.
本文研究了语义 MEDLINE,这是一种自然语言处理应用程序,通过组合统计算法进行了增强,可作为临床医生的潜在决策支持工具。语义 MEDLINE 对 PubMed 引文中的文本进行总结,将其转化为简洁的声明,并根据用户的信息需求进行过滤,可在图形界面中显示。Combo 算法的集成使语义 MEDLINE 能够提供满足多种不同需求的信息。
作者选择了三个疾病主题,并精心设计了 PubMed 搜索查询,以检索解决这些疾病预防问题的引文。然后,他们使用 Semantic MEDLINE 及其 Combo 算法增强功能处理引文。为了评估结果,他们为每个疾病主题构建了一个参考标准,该标准由商业决策支持工具推荐的预防干预措施组成。
在主要和次要分析中,带有 Combo 的语义 MEDLINE 的平均召回率为 79%,平均精度为 45%,最终平均 F 分数为 0.57。
这种新的即时信息传递方法有望成为临床医生的决策支持工具。卫生科学图书馆可以实施此类技术,为用户提供量身定制的信息。