Gastrointestinal Institute of Sun Yat-sen University, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
Br J Cancer. 2012 May 22;106(11):1735-41. doi: 10.1038/bjc.2012.82. Epub 2012 Apr 26.
Current imaging modalities are inadequate in preoperatively predicting regional lymph node metastasis (RLNM) status in rectal cancer (RC). Here, we designed support vector machine (SVM) model to address this issue by integrating epithelial-mesenchymal-transition (EMT)-related biomarkers along with clinicopathological variables.
Using tissue microarrays and immunohistochemistry, the EMT-related biomarkers expression was measured in 193 RC patients. Of which, 74 patients were assigned to the training set to select the robust variables for designing SVM model. The SVM model predictive value was validated in the testing set (119 patients).
In training set, eight variables, including six EMT-related biomarkers and two clinicopathological variables, were selected to devise SVM model. In testing set, we identified 63 patients with high risk to RLNM and 56 patients with low risk. The sensitivity, specificity and overall accuracy of SVM in predicting RLNM were 68.3%, 81.1% and 72.3%, respectively. Importantly, multivariate logistic regression analysis showed that SVM model was indeed an independent predictor of RLNM status (odds ratio, 11.536; 95% confidence interval, 4.113-32.361; P<0.0001).
Our SVM-based model displayed moderately strong predictive power in defining the RLNM status in RC patients, providing an important approach to select RLNM high-risk subgroup for neoadjuvant chemoradiotherapy.
目前的影像学方法在预测直肠癌(RC)的区域淋巴结转移(RLNM)状态方面还不够完善。在这里,我们设计了支持向量机(SVM)模型,通过整合上皮-间充质转化(EMT)相关生物标志物以及临床病理变量来解决这个问题。
使用组织微阵列和免疫组织化学技术,在 193 例 RC 患者中测量了 EMT 相关生物标志物的表达。其中,74 例患者被分配到训练集中,以选择用于设计 SVM 模型的稳健变量。在测试集中(119 例患者)验证了 SVM 模型的预测值。
在训练集中,选择了包括六个 EMT 相关生物标志物和两个临床病理变量在内的八个变量来设计 SVM 模型。在测试集中,我们确定了 63 例 RLNM 高风险患者和 56 例 RLNM 低风险患者。SVM 预测 RLNM 的敏感性、特异性和总准确性分别为 68.3%、81.1%和 72.3%。重要的是,多变量逻辑回归分析表明,SVM 模型确实是 RLNM 状态的独立预测因子(优势比,11.536;95%置信区间,4.113-32.361;P<0.0001)。
我们基于 SVM 的模型在定义 RC 患者的 RLNM 状态方面显示出了中等强度的预测能力,为选择接受新辅助放化疗的 RLNM 高危亚组提供了一种重要方法。