Faculty of Sciences and Mathematics, University of Niš, Post Office Box 224, 18000 Niš, Serbia.
Phys Rev Lett. 2012 Apr 6;108(14):140402. doi: 10.1103/PhysRevLett.108.140402. Epub 2012 Apr 3.
Density-wave patterns in discrete media with local interactions are known to be unstable. We demonstrate that stable double- and triple-period patterns (DPPs and TPPs), with respect to the period of the underlying lattice, exist in media with nonlocal nonlinearity. This is shown in detail for dipolar Bose-Einstein condensates, loaded into a deep one-dimensional optical lattice. The DPP and TPP emerge via phase transitions of the second and first kind, respectively. The emerging patterns may be stable if the dipole-dipole interactions are repulsive and sufficiently strong, in comparison with the local repulsive nonlinearity. Within the set of the considered states, the TPPs realize a minimum of the free energy. A vast stability region for the TPPs is found in the parameter space, while the DPP stability region is relatively narrow. The same mechanism may create stable density-wave patterns in other physical media featuring nonlocal interactions.
在具有局部相互作用的离散介质中,密度波模式是不稳定的。我们证明,在具有非局部非线性的介质中存在稳定的双周期和三周期模式(DPP 和 TPP),相对于基础晶格的周期。对于加载到深一维光晶格中的偶极玻色-爱因斯坦凝聚体,详细地展示了这一点。DPP 和 TPP 分别通过第二和第一类相变出现。如果偶极-偶极相互作用是排斥的并且足够强,与局部排斥非线性相比,出现的模式可能是稳定的。在考虑的状态集合内,TPP 实现了自由能的最小值。在参数空间中发现了 TPP 的广阔稳定区域,而 DPP 的稳定区域相对较窄。相同的机制可能会在具有非局部相互作用的其他物理介质中产生稳定的密度波模式。