Suppr超能文献

无金属掺杂工艺提高氧化锌纳米棒的导电性同时保持其透明性。

Metal-free doping process to enhance the conductivity of zinc oxide nanorods retaining the transparency.

机构信息

Department of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.

出版信息

ACS Appl Mater Interfaces. 2012 May;4(5):2709-16. doi: 10.1021/am300348g. Epub 2012 May 8.

Abstract

The well-ordered metal oxide nanostructures can be synthesized successfully, but the conductance of these structures is limited, which is a disadvantage for applying these in photovoltaic and display devices. Conductivity of a semiconductor can be improved by using metal doping, but the issue becomes a major challenge in nanostructures since their high surface energy usually hinders any metal doping process. Here we show an entirely new metal-free doping strategy to enhance the current conduction of ZnO nanorods' (NRs) arrays through a sulphidation technique. The process is based on the electronegativity difference between S and O because of which one can expect a rigorous bond rearrangement at the interface and a ZnOS-ZnS composite is formed as O is being partially replaced by S. The current conduction by the metal oxide NRs arrays is significantly enhanced by nearly 4 orders of magnitude without sacrificing the transparency of the NRs arrays. The increased current conduction is assigned due to an increase in the Zn(i) concentration as evidenced from the electron paramagnetic resonance measurements. The composite layer grown on p-Si forms a photodiode which is highly sensitive to visible light with a very fast response time.

摘要

有序的金属氧化物纳米结构可以成功合成,但这些结构的电导率有限,这对于将它们应用于光伏和显示设备是不利的。通过金属掺杂可以提高半导体的电导率,但在纳米结构中,这是一个主要的挑战,因为它们的高表面能通常阻碍任何金属掺杂过程。在这里,我们展示了一种全新的无金属掺杂策略,通过硫化技术来提高 ZnO 纳米棒(NRs)阵列的电流传导。该过程基于 S 和 O 之间的电负性差异,由于这一点,人们可以预期在界面处会发生严格的键重排,并且随着 O 的部分被 S 取代,形成 ZnOS-ZnS 复合材料。通过金属氧化物 NRs 阵列的电流传导显著增强了近 4 个数量级,而 NRs 阵列的透明度没有降低。电子顺磁共振测量证明,电流传导的增加归因于 Zn(i)浓度的增加。在 p-Si 上生长的复合层形成了光电二极管,对可见光高度敏感,响应时间非常快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验