Martin Juliette, Lavery Richard
Université Lyon 1; CNRS, UMR 5086; Bases Moléculaires et Structurales des Systèmes Infectieux, IBCP, 7 passage du, Vercors, F-69367, France.
BMC Biophys. 2012 May 6;5:7. doi: 10.1186/2046-1682-5-7.
Protein-protein recognition is of fundamental importance in the vast majority of biological processes. However, it has already been demonstrated that it is very hard to distinguish true complexes from false complexes in so-called cross-docking experiments, where binary protein complexes are separated and the isolated proteins are all docked against each other and scored. Does this result, at least in part, reflect a physical reality? False complexes could reflect possible nonspecific or weak associations.
In this paper, we investigate the twilight zone of protein-protein interactions, building on an interesting outcome of cross-docking experiments: false complexes seem to favor residues from the true interaction site, suggesting that randomly chosen partners dock in a non-random fashion on protein surfaces. Here, we carry out arbitrary docking of a non-redundant data set of 198 proteins, with more than 300 randomly chosen "probe" proteins. We investigate the tendency of arbitrary partners to aggregate at localized regions of the protein surfaces, the shape and compositional bias of the generated interfaces, and the potential of this property to predict biologically relevant binding sites. We show that the non-random localization of arbitrary partners after protein-protein docking is a generic feature of protein structures. The interfaces generated in this way are not systematically planar or curved, but tend to be closer than average to the center of the proteins. These results can be used to predict biological interfaces with an AUC value up to 0.69 alone, and 0.72 when used in combination with evolutionary information. An appropriate choice of random partners and number of docking models make this method computationally practical. It is also noted that nonspecific interfaces can point to alternate interaction sites in the case of proteins with multiple interfaces. We illustrate the usefulness of arbitrary docking using PEBP (Phosphatidylethanolamine binding protein), a kinase inhibitor with multiple partners.
An approach using arbitrary docking, and based solely on physical properties, can successfully identify biologically pertinent protein interfaces.
蛋白质-蛋白质识别在绝大多数生物过程中至关重要。然而,在所谓的交叉对接实验中,已证明很难从假复合物中区分出真正的复合物。在交叉对接实验中,二元蛋白质复合物被分开,分离出的蛋白质相互对接并打分。这个结果至少部分反映了物理现实吗?假复合物可能反映了可能的非特异性或弱关联。
在本文中,我们基于交叉对接实验的一个有趣结果,研究蛋白质-蛋白质相互作用的模糊地带:假复合物似乎倾向于真正相互作用位点的残基,这表明随机选择的伴侣以非随机方式停靠在蛋白质表面。在这里,我们对198种蛋白质的非冗余数据集与300多种随机选择的“探针”蛋白质进行任意对接。我们研究了任意伴侣在蛋白质表面局部区域聚集的趋势、生成界面的形状和组成偏差,以及这种特性预测生物学相关结合位点的潜力。我们表明,蛋白质-蛋白质对接后任意伴侣的非随机定位是蛋白质结构的一个普遍特征。以这种方式生成的界面并非系统地呈平面或弯曲状,但往往比平均水平更靠近蛋白质中心。这些结果可单独用于预测生物界面,AUC值高达0.69,与进化信息结合使用时为0.72。随机伴侣和对接模型数量的适当选择使该方法在计算上可行。还应指出,在具有多个界面的蛋白质情况下,非特异性界面可能指向替代相互作用位点。我们使用PEBP(磷脂酰乙醇胺结合蛋白)(一种具有多个伴侣的激酶抑制剂)说明了任意对接的有用性。
一种仅基于物理性质的任意对接方法能够成功识别生物学相关的蛋白质界面。