Department of Radiology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
Med Phys. 2012 May;39(5):2405-16. doi: 10.1118/1.3700172.
In this report, the authors introduce the general concept of the completeness map, as a means to evaluate the completeness of data acquired by a given CT system design (architecture and scan mode). They illustrate the utility of completeness map by applying the completeness map concept to a number of candidate CT system designs, as part of a study to advance the state-of-the-art in cardiac CT.
In order to optimally reconstruct a point within a volume of interest (VOI), the Radon transform on all possible planes through that point should be measured. The authors quantified the extent to which this ideal condition is satisfied for the entire image volume. They first determined a Radon completeness number for each point in the VOI, as the percentage of possible planes that is actually measured. A completeness map is then defined as a 3D matrix of the completeness numbers for the entire VOI. The authors proposed algorithms to analyze the projection datasets in Radon space and compute the completeness number for a fixed point and apply these algorithms to various architectures and scan modes that they are evaluating. In this report, the authors consider four selected candidate architectures, operating with different scan modes, for a total of five system design alternatives. Each of these alternatives is evaluated using completeness map.
If the detector size and cone angle are large enough to cover the entire cardiac VOI, a single-source circular scan can have ≥99% completeness over the entire VOI. However, only the central z-slice can be exactly reconstructed, which corresponds to 100% completeness. For a typical single-source architecture, if the detector is limited to an axial dimension of 40 mm, a helical scan needs about five rotations to form an exact reconstruction region covering the cardiac VOI, while a triple-source helical scan only requires two rotations, leading to a 2.5x improvement in temporal resolution. If the source and detector of an inverse-geometry (IGCT) system have the same axial extent, and the spacing of source points in the axial and transaxial directions is sufficiently small, the IGCT can also form an exact reconstruction region for the cardiac VOI. If the VOI can be covered by the x-ray beam in any view, a composite-circling scan can generate an exact reconstruction region covering the VOI.
The completeness map evaluation provides useful information for selecting the next-generation cardiac CT system design. The proposed completeness map method provides a practical tool for analyzing complex scanning trajectories, where the theoretical image quality for some complex system designs is impossible to predict, without yet-undeveloped reconstruction algorithms.
在本报告中,作者介绍了完备图的一般概念,作为评估给定 CT 系统设计(架构和扫描模式)所采集数据完备性的一种手段。他们通过将完备图概念应用于多个候选 CT 系统设计,来展示完备图的实用性,这是一项推进心脏 CT 技术进步的研究的一部分。
为了在感兴趣的体积(VOI)内最佳地重建一个点,应该测量穿过该点的所有可能平面的 Radon 变换。作者量化了对于整个图像体积,这种理想情况得到满足的程度。他们首先为 VOI 中的每个点确定一个 Radon 完备数,即实际测量的可能平面的百分比。然后,将完备图定义为整个 VOI 的完备数的 3D 矩阵。作者提出了用于在 Radon 空间中分析投影数据集并为固定点计算完备数的算法,并将这些算法应用于他们正在评估的各种架构和扫描模式。在本报告中,作者考虑了四种具有不同扫描模式的选定候选架构,总共有五种系统设计备选方案。使用完备图评估每个备选方案。
如果探测器尺寸和锥角足够大以覆盖整个心脏 VOI,则单源圆形扫描在整个 VOI 上可以具有≥99%的完备性。然而,只有中央 z 切片可以精确重建,对应于 100%的完备性。对于典型的单源架构,如果探测器限于 40mm 的轴向尺寸,则螺旋扫描需要大约五次旋转才能形成覆盖心脏 VOI 的精确重建区域,而三源螺旋扫描仅需要两次旋转,从而使时间分辨率提高了 2.5 倍。如果逆几何(IGCT)系统的源和探测器具有相同的轴向范围,并且源点在轴向和横向方向上的间隔足够小,则 IGCT 也可以为心脏 VOI 形成精确重建区域。如果在任何视图中都可以用 X 射线束覆盖 VOI,则复合环绕扫描可以生成覆盖 VOI 的精确重建区域。
完备图评估为选择下一代心脏 CT 系统设计提供了有用的信息。所提出的完备图方法为分析复杂扫描轨迹提供了一种实用工具,对于某些复杂系统设计,理论图像质量是不可能预测的,而无需使用尚未开发的重建算法。