Suppr超能文献

光声断层扫描和荧光分子断层扫描:基于吲哚菁绿的对比研究。

Photoacoustic tomography and fluorescence molecular tomography: a comparative study based on indocyanine green.

机构信息

Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA.

出版信息

Med Phys. 2012 May;39(5):2512-7. doi: 10.1118/1.3700401.

Abstract

PURPOSE

Both photoacoustic tomography (PAT) and fluorescence molecular tomography (FMT) can be used for molecular imaging when contrast agents are administrated. The goal of this work is to comparatively evaluate the performance of reflection-mode PAT and FMT in common phantom when indocyanine green (ICG) was used as a contrast agent.

METHODS

Reflection-mode PAT and FMT systems were developed. Target embedded in a background phantom with different ICG concentration, size, and depth location was examined. Comparisons were made in terms of target morphology, spatial resolution, and sensitivity between the two modalities.

RESULTS

Phantom results showed that PAT and FMT gave different image morphology. PAT offered higher spatial resolution, while FMT provided higher sensitivity. Thus, improved target detection could be achieved by correlating the complementary information obtained from the two modalities.

CONCLUSIONS

The combination of high resolution PAT and high sensitivity FMT will provide a more complete range of pathology spectra for more reliable target detection, suggesting a potentially better diagnostic tool when this combination coupled with the administration of ICG as contrast agent is applied to clinical problems in the future.

摘要

目的

当造影剂被给予时,光声断层扫描(PAT)和荧光分子断层扫描(FMT)都可用于分子成像。本工作的目的是在使用吲哚菁绿(ICG)作为造影剂时,比较评估反射模式 PAT 和 FMT 在普通体模中的性能。

方法

开发了反射模式 PAT 和 FMT 系统。在具有不同 ICG 浓度、大小和深度位置的背景体模中检查了嵌入的目标。比较了两种模式在目标形态、空间分辨率和灵敏度方面的差异。

结果

体模结果表明,PAT 和 FMT 给出了不同的图像形态。PAT 提供了更高的空间分辨率,而 FMT 提供了更高的灵敏度。因此,通过相关两种模式获得的互补信息,可以实现目标检测的改善。

结论

高分辨率 PAT 和高灵敏度 FMT 的结合将为更可靠的目标检测提供更完整的病理学光谱范围,当这种组合与 ICG 作为造影剂联合应用于未来的临床问题时,这将是一种更有潜力的诊断工具。

相似文献

2
Comparison of photoacoustic and fluorescence tomography for the imaging of ICG-labelled liposomes in the medullary cavity in mice.
Photoacoustics. 2020 Oct 1;20:100210. doi: 10.1016/j.pacs.2020.100210. eCollection 2020 Dec.
3
Photoacoustic imaging enhanced by indocyanine green-conjugated single-wall carbon nanotubes.
J Biomed Opt. 2013 Sep;18(9):096006. doi: 10.1117/1.JBO.18.9.096006.
4
Indocyanine green enhanced co-registered diffuse optical tomography and photoacoustic tomography.
J Biomed Opt. 2013 Dec;18(12):126006. doi: 10.1117/1.JBO.18.12.126006.
5
Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging.
PLoS One. 2014 Nov 7;9(11):e112667. doi: 10.1371/journal.pone.0112667. eCollection 2014.
6
Drug delivery monitoring by photoacoustic tomography with an ICG encapsulated double emulsion.
Opt Express. 2011 Jul 18;19(15):14335-47. doi: 10.1364/OE.19.014335.
7
Multiscale Functional and Molecular Photoacoustic Tomography.
Ultrason Imaging. 2016 Jan;38(1):44-62. doi: 10.1177/0161734615584312. Epub 2015 May 1.
10
Size-adjustable ring-shape photoacoustic tomography imager in vivo.
J Biophotonics. 2022 Jul;15(7):e202200070. doi: 10.1002/jbio.202200070. Epub 2022 Apr 20.

引用本文的文献

1
Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies.
J Biomed Opt. 2023 Mar;28(3):036001. doi: 10.1117/1.JBO.28.3.036001. Epub 2023 Mar 7.
2
Automatic threshold selection algorithm to distinguish a tissue chromophore from the background in photoacoustic imaging.
Biomed Opt Express. 2021 Jun 4;12(7):3836-3850. doi: 10.1364/BOE.422170. eCollection 2021 Jul 1.
4
Comparison of photoacoustic and fluorescence tomography for the imaging of ICG-labelled liposomes in the medullary cavity in mice.
Photoacoustics. 2020 Oct 1;20:100210. doi: 10.1016/j.pacs.2020.100210. eCollection 2020 Dec.
5
State-of-the-Art Preclinical Photoacoustic Imaging in Oncology: Recent Advances in Cancer Theranostics.
Contrast Media Mol Imaging. 2019 Apr 30;2019:5080267. doi: 10.1155/2019/5080267. eCollection 2019.
6
Contrast improvement in indocyanine green fluorescence sensing in thick tissue using a time-gating method.
Biomed Opt Express. 2019 Feb 12;10(3):1234-1249. doi: 10.1364/BOE.10.001234. eCollection 2019 Mar 1.
7
Multimodal photoacoustic imaging as a tool for sentinel lymph node identification and biopsy guidance.
Biomed Eng Lett. 2018 Apr 21;8(2):183-191. doi: 10.1007/s13534-018-0068-1. eCollection 2018 May.
8
Ratiometric optical nanoprobes enable accurate molecular detection and imaging.
Chem Soc Rev. 2018 Apr 23;47(8):2873-2920. doi: 10.1039/C7CS00612H.
9
Quinone-fused porphyrins as contrast agents for photoacoustic imaging.
Chem Sci. 2017 Sep 1;8(9):6176-6181. doi: 10.1039/c7sc01369h. Epub 2017 Jun 27.

本文引用的文献

2
Deeply penetrating in vivo photoacoustic imaging using a clinical ultrasound array system.
Biomed Opt Express. 2010 Jul 26;1(1):278-284. doi: 10.1364/BOE.1.000278.
6
Fast full-view photoacoustic imaging by combined scanning with a linear transducer array.
Opt Express. 2007 Nov 12;15(23):15566-75. doi: 10.1364/oe.15.015566.
7
Adaptive finite element based tomography for fluorescence optical imaging in tissue.
Opt Express. 2004 Nov 1;12(22):5402-17. doi: 10.1364/opex.12.005402.
8
Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles.
Gastroenterology. 2009 May;136(5):1514-25.e2. doi: 10.1053/j.gastro.2009.01.006. Epub 2009 Jan 14.
9
DOT guided fluorescence molecular tomography of arbitrarily shaped objects.
Med Phys. 2008 Dec;35(12):5703-7. doi: 10.1118/1.3020594.
10
Diffuse optical tomography guided quantitative fluorescence molecular tomography.
Appl Opt. 2008 Apr 20;47(12):2011-6. doi: 10.1364/ao.47.002011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验