Suppr超能文献

在聚二甲基硅氧烷薄膜上的内皮细胞和周细胞共培养物中,由磷脂酶 A2 激活引发的微毛细管样结构。

Microcapillary-like structures prompted by phospholipase A2 activation in endothelial cells and pericytes co-cultures on a polyhydroxymethylsiloxane thin film.

机构信息

Department of Clinical and Molecular Biomedicine, University of Catania, viale Andrea Doria 5, 95125 Catania, Italy.

出版信息

Biochimie. 2012 Sep;94(9):1860-70. doi: 10.1016/j.biochi.2012.04.021. Epub 2012 May 2.

Abstract

A thin film of poly(hydroxymethylsiloxane) (PHMS) has been deposited on glass dishes and tested as artificial support material for vascularization from mixed cultures of endothelial cells (EC) and pericytes (PC). The EC/PC co-cultures adhered massively on PHMS, with the formation of net-like microcapillary structures. Such evidence was not found on control glass substrates in the same co-culture conditions neither on PHMS for EC and PC in monocultures. The physicochemical characterization of PHMS and control glass surface by time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, water contact angle and atomic force microscopy, pointed to the main role of the polymer hydrophobilicy to explain the observed cellular behavior. Moreover, enhanced intercellular cross-talk was evidenced by the up-regulation and activation of cytoplasmic and Ca(2+)-independent phospholipase A(2) (cPLA(2) and iPLA(2)) expression and cPLA(2) phosphorylation, leading to the cell proliferation and microcapillary formation on the PHMS surface, as evidenced by confocal microscopy analyses. Co-cultures, established with growth-arrested PCs by treatment with mitomycin C, showed an increase in EC proliferation on PHMS. AACOCF(3) or co-transfection with cPLA(2) and iPLA(2)siRNA reduced cell proliferation. The results highlight the major role played by EC/PC cross-talk as well as the hydrophobic character of the substrate surface, to promote microcapillary formation. Our findings suggest an attractive strategy for vascular tissue engineering and provide new details on the interplay of artificial substrates and capillary formation.

摘要

已将一层聚(羟基甲基硅氧烷)(PHMS)薄膜沉积在玻璃盘上,并将其作为混合培养的内皮细胞(EC)和周细胞(PC)血管生成的人工支持材料进行了测试。EC/PC 共培养物大量附着在 PHMS 上,形成网状微毛细管结构。在相同的共培养条件下,在对照玻璃底物上或在 PHMS 上单培养 EC 和 PC 上均未发现这种证据。通过飞行时间二次离子质谱、X 射线光电子能谱、水接触角和原子力显微镜对 PHMS 和对照玻璃表面的理化特性进行了表征,表明聚合物的疏水性是解释观察到的细胞行为的主要原因。此外,通过上调和激活细胞质和 Ca(2+)-非依赖性磷脂酶 A(2)(cPLA(2)和 iPLA(2))表达和 cPLA(2)磷酸化,增强了细胞间的串扰,导致细胞增殖和微毛细管在 PHMS 表面形成,如共聚焦显微镜分析所示。用丝裂霉素 C 处理生长停滞的 PC 建立的共培养物显示 EC 在 PHMS 上的增殖增加。AACOCF(3)或与 cPLA(2)和 iPLA(2)siRNA 共转染可减少细胞增殖。结果强调了 EC/PC 串扰以及底物表面疏水性在促进微毛细管形成中的主要作用。我们的研究结果为血管组织工程提供了有吸引力的策略,并为人工基质和毛细管形成的相互作用提供了新的细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验