Suppr超能文献

肝胆转运的物理化学性质空间和预测大鼠胆汁排泄的计算模型。

Physicochemical property space of hepatobiliary transport and computational models for predicting rat biliary excretion.

机构信息

Department of Pharmacokinetics, Dynamics, and Metabolism, MS 8220-2451, Pfizer World Wide Research and Development, Pfizer, Inc., Groton, CT 06340, USA.

出版信息

Drug Metab Dispos. 2012 Aug;40(8):1527-37. doi: 10.1124/dmd.112.044628. Epub 2012 May 11.

Abstract

Biliary excretion (BE) is a major elimination pathway, and its prediction is particularly important for optimization of systemic and/or target-site exposure of new molecular entities. The objective is to characterize the physicochemical space associated with hepatobiliary transport and rat BE and to develop in silico models. BE of 123 in-house compounds was obtained using the bile-duct cannulated rat model. Human and rat hepatic uptake transporters (hOATP1B1, hOATP1B3, hOATP2B1, and rOatp1b2) substrates (n = 183) were identified using transfected cells. Furthermore, the datasets were extended by adding BE of 163 compounds and 97 organic anion transporting polypeptide (OATP) substrates from the literature. Approximately 60% of compounds showing percentage of BE (%BE) ≥ 10 are anions, with mean BE of anions (36%) more than 3-fold higher than that of nonacids (11%). Compounds with %BE ≥ 10 are found to have high molecular mass, large polar surface area, more rotatable bonds, and high H-bond count, whereas the lipophilicity and passive membrane permeability are lower compared with compounds with %BE < 10. According to statistical analysis and principal component analysis, hOATPs and rOatp1b2 substrates showed physicochemical characteristics that were similar to those of the %BE ≥ 10 dataset. We further build categorical in silico models to predict rat BE, and the models (gradient boosting machine and scoring function) developed showed 80% predictability in identifying the rat BE bins (%BE ≥ 10 or < 10). In conclusion, the significant overlap of the property space of OATP substrates and rat BE suggests a predominant role of sinusoidal uptake transporters in biliary elimination. Categorical in silico models to predict rat BE were developed, and successful predictions were achieved.

摘要

胆汁排泄(BE)是一种主要的消除途径,其预测对于优化新分子实体的全身和/或靶部位暴露尤其重要。本研究旨在描述与肝胆转运和大鼠 BE 相关的物理化学空间,并开发计算模型。采用胆管插管大鼠模型获得了 123 种内部化合物的 BE 值。使用转染细胞鉴定了人源和大鼠肝摄取转运体(hOATP1B1、hOATP1B3、hOATP2B1 和 rOatp1b2)底物(n = 183)。此外,通过添加来自文献的 163 种化合物和 97 种有机阴离子转运多肽(OATP)底物扩展了数据集。约 60%的显示 BE 百分比(%BE)≥10%的化合物为阴离子,阴离子的平均 BE(36%)是非酸性化合物(11%)的 3 倍以上。发现具有%BE≥10%的化合物具有较高的分子量、较大的极性表面积、更多的可旋转键和较高的氢键计数,而与%BE<10%的化合物相比,脂溶性和被动膜通透性较低。根据统计分析和主成分分析,hOATPs 和 rOatp1b2 底物显示出与%BE≥10%数据集相似的物理化学特征。我们进一步构建了用于预测大鼠 BE 的分类计算模型,所开发的模型(梯度提升机和评分函数)在识别大鼠 BE 箱(%BE≥10 或<10)方面显示出 80%的可预测性。总之,OATP 底物和大鼠 BE 的性质空间存在显著重叠,表明胆汁消除中主要涉及窦状隙摄取转运体。开发了用于预测大鼠 BE 的分类计算模型,并取得了成功的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验